Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 785-791     DOI:
Research Articles Current Issue | Archive | Adv Search |
Influence of Sb addition on Martensitic and Magnetic Transformation in β+γ Two-phase Based Co-Ni-Al Shape Memory Alloy
Fenghua Luo
中南大学粉末冶金研究院功能材料研究所
Cite this article: 

Fenghua Luo. Influence of Sb addition on Martensitic and Magnetic Transformation in β+γ Two-phase Based Co-Ni-Al Shape Memory Alloy. Acta Metall Sin, 2006, 42(8): 785-791 .

Download:  PDF(2154KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Influence of 1 at.% Sb addition on martensitic transformation and Curie point of Co41Ni32Al27 alloy is investigated for the first time by optical metallograph, SEM, EDX, XRD, DSC and VSM methods. The results show that martensitic crystal structure of Co41Ni32Al26Sb1 alloy is still L10 type. Both martensitic transformation temperature Tm and Curie point Tc is linear relation to quenching temperature. Tm increase 9K and Tc increase 7.5K for every 10K increasing in quenched temperature. Quenched from same temperature, Tm of Co41Ni32Al26Sb1 alloy is higher than that of Co41Ni32Al27 alloy by 70K,meanwhile Tc is higher by 15K. The melting point of Co-Ni-Al alloy decreases by the Sb addition, eutectic structure appears in Co41Ni32Al26Sb1 alloy annealed at 1623K, indicated that the alloy is partial melted. The martensitic transformation temperature range of Co41Ni32Al26Sb1 alloy is 20-28K, less than half that of Co41Ni32Al27 alloy. This is a very important result to benefit the achievement of large magnetic field induced strain on Co-Ni-Al based alloy. The results of Tm and Tc were explained by total average s+d electron concentration and magnetic valence number Zm separately.
Key words:  Co-Ni-Al-Sb alloy      martensitic transformation      Curie point      
Received:  14 November 2005     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/785

[1]Oikawa K,Wulff L,Iijima T,Gejima F,Ohmori T,Fujita A,Fukamichi K,Kainuma R,Ishida K.Appl Phys Lett,2001;79:3290
[2]Oikawa K,Ota T,Gejima F,Ohmori T,Kainuma R,Ishida K.Mater Trans JIM,2001;42:2472
[3]Litvinov V S,Arkhangel'skaya A A.Phys Met Metall,1978;44(4):131
[4]Kainuma R,Ise M,Jia C C,Ohtani H,Ishida K.Intermetallics,1996;4(Suppl.):151
[5]Karaca H E,Karaman I,Lagoudas D C,Maier H J,Chumlyakov Y I.Scr Mater,2003;49:831
[6]Tanaka Y,Ohmori T,Oikawa K,Kainuma R,Ishida K.Mater Trans JIM,2004;45:427
[7]Morito H,Fujita A,Fukamichi K,Kainuma R,Ishida K.Appl Phys Lett,2002;81:1657
[8]Sozinov A,Likhachev A A,Lanska N,Ullakko K.Appl Phys Lett,2002;80:1746
[9]Brown P J,Ishida K,Kainuma R,Kanomata T,Neumannn K U,Oikawa K,Ouladdiaf B,Ziebeck K R A.J Phys:Condens Matter,2005;17:1301
[10]Luo F H,Oikawa K,Ishida K.Acta Metall Sin,2005;41:680(罗丰华,及川胜成,石田清仁.金属学报,2005;41:680)
[11]Sutou Y,Imano Y,Omori T,Kainuma R,Ishida K,Oikawa K.Appl Phys Lett,2004;85:4358
[12]Enami K,Nenno S.Metall Trans,1971;2:1487
[13]Schryvers D.J Phys IV,Colloq,1995;5C:225
[14]Hamilton R F,Sehitoglu H,Efstathiou C,Majier H J,Chumlyakov Y,Zhang X Y.Scr Mater,2005;53:131
[15]Ishida K,Kainuma R,Ueno N,Nishizawa T.Metall Trans,1991;22A:441
[16]Fujita A,Morito H,Kudo T,Fukamichi K,Kainuma R,Ishida K,Oikawa K.Mater Trans JIM,2003;44:2180
[17]Luo F H,Chen K H,Oikawa K,Ishida K.Heat Treat Met,2005;30(9):1(罗丰华,陈康华,及川胜成,石田清仁.金屑热处理,2005;30(9):1)
[18]Wuttig M,Liu L H,Tsuchiya K,Jame R D.J Appl Phys,2000;87:4707
[19]Oikawa K,Imano Y,Chernenko V A,Luo F H,Omori T,Sutou Y,Kainuma R,Kanomata T,Ishida K.Mater Trans JIM,2005;46:734
[20]Oikawa K,Omori T,Kainuma R,Ishida K.J Magn Magn Mater,2004;272-276:2043
[21]Williams A R,Moruzzi V L,Malozemoff A P,Terakura K.IEEE Trans Magn,1983;19:1983
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[3] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[9] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[10] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[11] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[12] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[13] Kejian LI,Zhipeng CAI,Yao WU,Jiluan PAN. Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process[J]. 金属学报, 2017, 53(7): 778-788.
[14] Xue WANG,Lei HU,Dongxu CHEN,Songtao SUN,Liquan LI. Effect of Martensitic Transformation on Stress Evolution in Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2017, 53(7): 888-896.
[15] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
No Suggested Reading articles found!