Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (11): 1195-1198     DOI:
Research Articles Current Issue | Archive | Adv Search |
Microstructural evolution of nanocrystal-line Al-Zn-Mg-Cu alloy powders by cryomilling
YANG Bin; CHENG Junsheng; FAN Jianzhong; TIAN Xiaofeng; CHEN Hanbin ZHANG Jishan
State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing; International Centre for Materials Physics; The Chinese Academy of Sciences
Cite this article: 

YANG Bin; CHENG Junsheng; FAN Jianzhong; TIAN Xiaofeng; CHEN Hanbin ZHANG Jishan. Microstructural evolution of nanocrystal-line Al-Zn-Mg-Cu alloy powders by cryomilling. Acta Metall Sin, 2005, 41(11): 1195-1198 .

Download:  PDF(335KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Nanocrystalline Al-Zn-Mg-Cu alloy powders have been successfully fabricated by mechanically milling at cryogenic temperature (cryomilling) in liquid nitrogen. Microstructural evolution of the alloy powders during cryomilling was analyzed. The experimental results show that the as-atomized Al-Zn-Mg-Cu alloy powder size was gradually reduced and approached 35 nm after 15 h cryomilling. MgZn2 phase gradually disappeared and ultimately was super-saturated into α-Al. No significant grain growth for the nanocrystalline Al-Zn-Mg-Cu alloy was found when it was heated at or below 709 K, for example, the average grain size of the milling alloy heated at 709 K for 1 h is only 71 nm. The results obtained herein suggest that the significant thermal stability of the cryomilled Al-Zn-Mg-Cu material may be attributed to the presence of nano-scale Al2O3 particles.
Key words:  cryomilling      nanocrystalline      Al-Zn-Mg-Cu alloy      
Received:  30 June 2005     
ZTFLH:  TF122  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I11/1195

[1] Zakharov V V, Rostova T D. Met Sci Heat Treat, 1995;37:203
[2] Lengsfeld P, Juarez-Islas J A, Cassada W A. Int J Rap Solid, 1995; 8:237
[3] Goujon C, Goeuriot P, Delcroix P, Le Caer G. J Alloy Compd, 2001; 315: 276
[4] Yin W M, Whang S H, Mirshams R A. Acta Mater, 2005;53: 383
[5] Farghalli A M, Yuwei X. Mater Sci Eng, 2003; A354:133
[6] Song R G. Mater Rev, 2000; 14(1): 20 (宋仁国.材料导报,2000;14(1):20)
[7] Koch C C. Nanostruct Mater, 1997; 9: 13
[8] Zhang H W, Hei Z K, Liu G, Lu J, Lu K. Acta Mater,2003; 51:1871
[9] Lee J, Zhou F, Chung K H, Kim N J, Lavernia E J. Metall Mater Trans, 2001; 32A: 3109
[10] Zhou F, Lee J, Dallek S, Lavernia E J. J Mater Res, 2001;12: 3451
[11] Zhou F, Lee J, Lavernia E J. Scr Metall Mater, 2001; 44: 2013:
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[3] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[4] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[5] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[6] Di FENG, Xinming ZHANG, Hongmei CHEN, Yunxue JIN, Guoying WANG. Effect of Non-Isothermal Retrogression and Re-Ageing on Microstructure and Properties of Al-8Zn-2Mg-2Cu Alloy Thick Plate[J]. 金属学报, 2018, 54(1): 100-108.
[7] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[8] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[9] Jiaojiao DU,Guojian LI,Qiang WANG,Yonghui MA,Huimin WANG,Mengmeng LI. GROWTH MODE EVOLUTION AND SUBSEQUENT MAGNETIC PROPERTIES OF Fe FILMS WITH DIFFERENT GRAIN SIZES UNDER A HIGH MAGNETIC FIELD[J]. 金属学报, 2015, 51(7): 799-806.
[10] NI Song, LIAO Xiaozhou, ZHU Yuntian. EFFECT OF SEVERE PLASTIC DEFORMATION ON THE STRUCTURE AND MECHANICAL PROPERTIES OF BULK NANOCRYSTALLINE METALS[J]. 金属学报, 2014, 50(2): 156-168.
[11] PENG Xiao, WANG Fuhui. HIGH TEMPERATURE CORROSION OF NANO-CRYSTALLINE METALLIC MATERIALS[J]. 金属学报, 2014, 50(2): 202-211.
[12] LIU Li, LI Ying, WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION[J]. 金属学报, 2014, 50(2): 212-218.
[13] LI Xiaoyan. ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS[J]. 金属学报, 2014, 50(2): 219-225.
[14] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[15] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
No Suggested Reading articles found!