Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (10): 1104-1108     DOI:
Research Articles Current Issue | Archive | Adv Search |
Interface Fracture Mechanics of Failure For Oxide Scale on Superalloy
LEI Mingkai; XU Zhongcheng; YANG Fujun; GAO Feng
Department of Materials Engineering; Dalian University of Technology; Dalian 116024
Cite this article: 

LEI Mingkai; XU Zhongcheng; YANG Fujun; GAO Feng. Interface Fracture Mechanics of Failure For Oxide Scale on Superalloy. Acta Metall Sin, 2004, 40(10): 1104-1108 .

Download:  PDF(3678KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The stress state of the oxide scale on superalloy was analyzed using a bimaterial mode. The relationship between the maximum buckling deflection of oxide scale and the compressive stress of oxide scale was determined. Based on interface fracture mechanics, the buckling map for spalling was established. The spalling characteristics of the oxide scale described by the buckling map is consistent with the experimental data for the Al2O3 scale on the Ni-based superalloy under the conditions that the parameter relating to the roughness of the oxide alloy interface is between 0.3 and 0.4, a critical buckling index is 1 and a critical adhesion index is 1.15. The buckling and spalling course of the oxide scale on the superalloy was successfully explained with the buckling map.
Key words:  oxide scale      superalloy      interface fracture mechanics      
Received:  17 November 2003     
ZTFLH:  TG139  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I10/1104

[1] Lowell C E, Barrett C A, Palmer R W, Auping J V, PobstH B. Oxid Met, 1991; 36: 81
[2] Smialek J L. JOM, 2000; 1: 22
[3] Chan K S. Metall Mater Trans, 1997; A28: 411
[4] Chan K S, Cheruvu N S, Leverant G R. J Eng Gas TurbPower, 1998; 120: 609
[5] Chan K S, Cheruvu N S, Leverant G R. J Eng Gas TurbPower, 1999; 121: 484
[6] Lei M K, Yang F J, Luo P, Zhu X P. J Chin Soc CorrosProt. 2002; 22: 65(雷明凯,杨辅军,罗鹏,朱小鹏.中国腐蚀与防护学报,2002;22:65)
[7] Evans H E, Lobb R C. Corros Sci, 1984; 24: 209
[8] Hutchinson J W, Thouless M D, Liniger E G. Acta MetallMater, 1992; 40: 295
[9] Wang J S, Evans A G. Acta Mater, 1998; 46: 4993
[10] Evans A G, Hutchinson J W. Int J Solids Struct, 1984;20: 455
[11] Suo Z, Hutchinson J W. Int J Fract, 1990; 43: 1
[12] Hutchinson J W, Suo Z. Adv Appl Mech, 1992; 29: 63
[13] Evans A G, Hutchinson J W. Acta Metall Mater, 1995;43: 2507
[14] Qian Y H, Li M S, Zhang Y M. Corros Sci Prot Technol,2003; 15: 90(钱余海,李美栓,张亚明.腐蚀科学与防护技术,2003;15:90)
[15] Hutchinson J W, Mear M E, Rice J R. J Appl Mech, 1987;54: 828
[16] Christensen J R, Lipkin D M, Clarke D R. Acta Mater,1996; 44: 3813
[17] Wang J S, Evans A G. Acta Mater, 1999; 47: 699
[18] Tolpygo V K, Clarke D R. Mater Sci Eng, 2000; A278:151&
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[8] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[11] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!