Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (7): 779-784     DOI:
Research Articles Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF COLD PILGERING OF STAINLESS STEEL TUBES WITH COMPOSITE STRUCTURE
LIN Gang; YANG Yuansheng; GUO Dayong; HUA Fuan; ZHOU Quan
Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

LIN Gang; YANG Yuansheng; GUO Dayong; HUA Fuan; ZHOU Quan. NUMERICAL SIMULATION OF COLD PILGERING OF STAINLESS STEEL TUBES WITH COMPOSITE STRUCTURE. Acta Metall Sin, 2004, 40(7): 779-784 .

Download:  PDF(342KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A 3D finite element method is used to the simulation of cold pilgering process of 1Cr18Ni9Ti stainless steel tubes by using ANSYS software, which are cast by electromagnetic centrifugal casting (EMCC) and of the characteristic of composite structure. Simulation results show that during cold pilgering the better the axial plasticity of tubes, the smaller the shear stress $\sigma_{\rm rz}$ and the shear strain $\varepsilon_{\rm rz}$, as well as the better the property of rolling deformation. Along with the decrease of the Coulomb friction coefficient not only the $\sigma_{\rm rz}$ and the $\varepsilon_{\rm rz}$ are decreased, but also the discontinuity of $\sigma_{\rm rz}$ between outer columnar and inner equiaxied zone is decreased. Moreover, the property of rolling deformation and the quality of tubes are improved. With the increase of exciting currents, which enlarges equiaxed zone, not only the mechanical property of the tubes is improved, but also the $\sigma_{\rm rz}$ and the $\varepsilon_{\rm rz}$ are decreased. Moreover, the property of rolling deformation and the quality of tubes are also improved. The simulation results agree well with the experiment.
Key words:  stainless steel      anisotropy      cold pilgering      
Received:  17 September 2003     
ZTFLH:  TG335.7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I7/779

[1] Yang Y S, Liu Q M, Jiao Y N, Ge Y L, Hu Z Q, Gao Y Y, Jia G L, Zhang G Z. ISIJ Int, 1995; 35(4) : 389
[2] Wu X Q, Yang Y S, Hui X D, Hu Z Q. Scandinavian J Metall, 1999; 28: 59
[3] Yang Y S, Hu Z Q. Z Metallkd, 2001; 91(4) : 280
[4] Guo M H, Yang Y S, Hua F A, Guo D Y, He Y L, Hu Z Q. J Mater Eng, 2002; 232(9) : 7(郭明虎,杨院生,花福安,郭大勇,贺幼良,胡壮麒.材料工程,2002;232(9) :7)
[5] Yang Y S, Zhe W X, Hu Z Q. Proceedings of PRICM4,2001; 349
[6] Lin G, Yang Y S, Hua F A, Guo D Y, Hu Z Q. Ada MetallSin, 2003; 39: 1232(林刚,杨院生,花福安,郭大勇,胡壮麒.金属学报,2003;39:1232)
[7] Mulot S, Hacquin A, Montmitonnet P, Aubin J L. J MaterProc Technol, 1996; 60: 505
[8] Montmitonnet P, Loge R, Hamery M, Chastel Y, DoudouxJ L, Aubin J L. J Mater Proc Technol, 2002; 125-126: 814
[9] Su D. The Mechanical Property of Metal. Beijing: ChinaMachine Press, 1987: 74(束德林.金属力学性能.北京:机械工业出版社, 1987:74)
[10] Hill R A. Proc R Soc London, Ser. 1948; B193: 281
[11] Girard E, Guillen R, Weisbecker P, Francois M. J NuclearMater, 2001(294) : 330
[12] Cockctoft M G, Latham D J. A Simple Criterion of Ftac-ture for Ductile Metals. National Engineering Laboratory.Report Number 240, 1966
[13] Cockctoft M G, Latham D J. J Inst Metals, 1968; 96: 33
[1] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[4] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[7] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[8] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[9] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[10] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[11] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[12] LU Lei, ZHAO Huaizhi. Progress in Strengthening and Toughening Mechanisms of Heterogeneous Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1360-1370.
[13] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[14] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[15] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
No Suggested Reading articles found!