Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (4): 421-428     DOI:
Research Articles Current Issue | Archive | Adv Search |
MECHANICALLY--DRIVEN AMORPHIZATION IN A (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al MULTICOMPONENT ALLOY SYSTEM
HANG Laichang; SHEN Zhiqi; XU Jian
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

HANG Laichang; SHEN Zhiqi; XU Jian. MECHANICALLY--DRIVEN AMORPHIZATION IN A (Ti, Zr, Hf)--(Cu, Ni, Ag)--Al MULTICOMPONENT ALLOY SYSTEM. Acta Metall Sin, 2004, 40(4): 421-428 .

Download:  PDF(440KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The glass formation under high--energy ball milling was investigated for a (Ti0.33Zr0.33Hf0.33)50(Ni0.33Cu0.33Ag0.33)40Al10 high--order alloy system. For comparison, the glassy ribbon with the same composition was prepared using melt--spinning (MS) method as well. Structural features of the samples were characterized using X--ray diffraction, ransmission electron microscopy and differential scanning calorimetry. Mechanical alloying (MA) results in a formation of glassy alloy similar to that obtained by MS. But, the glass formation is incomplete and a small amount of unreated crystallites smaller than 30 nm in size still remains in the final product. Like the melt--spun glass, the ball--milled glassy alloy also exhibits a distinct glass transition and a wide supercooled liquid region of about 80 K. Crystallization of the glassy alloy is a two--step p rocess, regardless of the synthesis routes. After the primary crystallization is completed, the remaining amorphous phase shows a detectable glass transition and a large supercooled liquid region of about 100 K.
Key words:  mechanical alloying      amorphous alloy      supercooled liquid region      
Received:  13 May 2003     
ZTFLH:  TG139.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I4/421

[1] Seidel M, Eckert J, Schultz L. J Appl Phys, 1995; 77: 5446
[2] Seidel M, Eckert J, Zueco-Rodrigo E, Schultz L. J Non-Cryst Solids, 1996; 205-207: 514
[3] Schlorke N, Eckert J, Schultz L. Mater Sci Eng, 1997;A226-228: 425
[4] Sagel A, Wundrelich R K, Perepezko J H, Fecht H J. ApplPhys Lett, 1997; 70: 580
[5] Sagel A, Wundrelich R K, Fecht H J. Mater Lett, 1997; 33: 123
[6] Zhang L C, Xu J, Ma E. J Mater Res, 2002; 17: 1743
[7] Kawamura Y, Kato H, Inoue A, Masumoto T. Appl PhysLett, 1995; 67: 2008
[8] Sordelet D J, Rozhkova E, Huang P, Wheelock P B, BesserM F, Kramer M J, Calvo-Dahlborg M, Dahlborg U. JMater Res, 2002; 17: 186
[9] Lee M H, Bae D H, Kim W T, Kim D H, Rozhkova E,Wheelock P B, Sordelet D J. J Non-Cryst Solids, 2003;315: 89
[10] Kim K B, Warren P J, Cantor B. J Non-Cryst Solids,2003; 317: 17
[11] Ma L, Wang L, Zhang T, Inoue A. Mater Trans, 2002; 43:277
[12] Massalski T B, Okamoto H, Subramanian P R, KacprzakL. Binary Alloy Phase Diagrams (2nd ed.), Material Park,Ohio: ASM Inetrnational, 1990
[13] Gachon J C, Dirand M, Hertz J. J Less-Common Met,1983; 92: 307
[14] Lee P Y, Koch C C. J Mater Sci, 1988; 23: 2837
[15] Altounian Z, Batalla E, Strom-Olsen J O, Walter J L. JAppl Phys, 1987; 61: 149
[16] Williamson G K, Hall W H. Acta Metall, 1953; 1: 22
[17] Inoue A, Tomioka H, Masumoto T. J Mater Sci, 1983; 18:153
[18] Weeber A, Bakker H. Physica, 1988; 153B: 93
[19] Koch C C. Mater Sci Forum, 1992; 88-90: 243
[20] Schwarz R B, Petrich R R, Saw C K. J Non-Cryst Solids,1985; 76: 281
[21] Schwarz R B. Mater Sci Forum, 1998; 269-272: 665
[22] Schwarz R B, Petrich R R. J Less-Common Met, 1988;140: 171
[23] Chen Y, Mibole M, Hazif R L, Martin G. Phys Rev, 1993;48B: 14
[24] Galy D, Chaffron L, Martin G. J Mater Res, 1997; 12:688
[25] Lee P Y, Koch C C. Appl Phys Lett, 1987; 50: 1578
[26] Seidel M, Eckert J, Bacher I. Reibold M, Schultz L. ActaMater, 2000; 48: 3657
[27] Sagel A, Wanderka N, Wundrelich R K, Schubert-BischoffP, Fecht H J. Scr Mater, 1998; 38: 163
[28] Bellon P, Averback R S. Phys Rev Lett, 1995; 74: 1819
[29] Sheng H W, Wilde G, Ma E. Acta Mater, 2002; 50: 475
[30] Lee D, Cheng J, Yuan M, Wagner C N J, Ardell A J. JAppl Phys, 1988; 64: 4772
[31] Haruyama O, Kuroda A, Asahi N. J Non-Cryst Solids,1992; 150: 483
[32] Damonte L C, Mendoza-Zelis L A, Deledda S, Eckert J.Mater Sci Eng, 2003; A343: 194
[33] Sordelet D J, Rozhkova E, Huang P, Besser M F, KramerM J. Appl Phys Lett, 2002; 80: 4735
[34] El-Eskandarany M S, Saida J, Inoue A. Acta Mater, 2002;50: 2725
[35] Inoue A, Chen S, Masumoto T. Mater Sci Eng, 1994;A179/180: 346
[36] Matsubara E, Sugiyama K, Shinohara A H, Waseda Y,Inoue A, Zhang T, Masumoto T. Mater Sci Eng, 1994;A179/180: 444
[37] Rubin J B, Schwarz R B. Phys Rev, 1994; 50B: 795
[38] Desre P J. Mater Trans JIM, 1997; 38: 583
[39] Koster U, Meinhardt J, Roos S, Rudiger A. Mater SciForum, 1996; 255-227: 311
[40] Baricco M, Spriano S, Chang I, Petrzhik M I, BattezzatiL. Mater Sci Eng, 2001; A304-306: 305
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[3] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[4] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[5] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[6] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[7] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[8] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[9] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[10] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[11] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[12] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[13] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[14] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[15] Min ZHU, Zhongchen LU, Renzong HU, Liuzhang OUYANG. DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION[J]. 金属学报, 2016, 52(10): 1239-1248.
No Suggested Reading articles found!