Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1239-1248    DOI: 10.11900/0412.1961.2016.00360
Orginal Article Current Issue | Archive | Adv Search |
DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION
Min ZHU1,2(),Zhongchen LU2,3,Renzong HU1,2,Liuzhang OUYANG1,2
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
2 Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510640, China
3 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

Min ZHU, Zhongchen LU, Renzong HU, Liuzhang OUYANG. DIELECTRIC BARRIER DISCHARGE PLASMA ASSISTED BALL MILLING TECHNOLOGY AND ITS APPLICATIONS IN MATERIALS FABRICATION. Acta Metall Sin, 2016, 52(10): 1239-1248.

Download:  HTML  PDF(4738KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The development of external field assisted milling technologies and their application in materials fabrication have been briefly described. A recent developed milling method named as dielectric barrier discharge plasma assisted ball milling (DBDP-milling) was introduced. A combination of heating effect and high energy electron bombardment effect produced by plasma, as well as the milling mechanical effect was induced simultaneously in the DBDP-milling, which can effectively promote the powder refinement, activation and chemical reaction. On this basis, the DBDP-milling method was applied in the fabrication of cemented carbide, anode materials for lithium ion batteries, hydrogen storage materials, and so on. The studies have indicated that DBDP-milling could improve the efficiency of mill, produce unique structure and thus enhanced properties. In addition, DBDP-milling is also possible to establish a new material production process. Research results have demonstrated that the DBDP-milling method has a great potential in refinement, surface modification, mechanical alloying, composite fabrication and gas-solid reaction of powder materials for different applications.

Key words:  mechanical alloying      plasma      external field assisted mill      cemented carbide      anode material for lithium ion battery      hydrogen storage material     
Received:  03 August 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (No.51231003), National Basic Research Program of China (No.2010CB631300), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No.NSFC51621001), Natural Science Foundation of Guangdong Province (No.05200618) and Guangdong Provincial Laboratory System Construction Project (No.2012A061400002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00360     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1239

Fig.1  Schematic of electric-discharge-assisted mill [11]
(a) spark discharge mode
(b) glow discharge mode
Fig.2  Schematic of dielectric barrier discharge plasma assisted ball milling (DBDP-milling)
Fig.3  SEM images of Al powder milled in conventional milling (a) and DBDP-milling (b) respectively for 15 h[24]
Fig.4  SEM images of TiO2 powder milled in conventional milling (a) and DBDP-milling (b) respectively for 7 h[24]
Fig.5  DSC curves of W-C powder mixture prepared by conventional milling (a) and DBDP-milling with tension of 24 kV (b) for 3 h[25]
Fig.6  SEM images of powders after DBDP-milling for 3 h[32,35]
(a) W-C-Co powders, DBDP-milling
(b) WC powders after heating at 1100 ℃ for 1 h
(c) surface of WC-8Co bulk after heating at 1390 ℃ for 1 h
Fig.7  Microstructure and performance of Sn-C composite produced by O2-DBDP-milling[39]
(a) backscattered electron SEM image
(b) HRTEM image of typical microstructures in the Sn@SnOx/C composite
(c) rate capability of the Sn@SnOx/C composite (Cut-off potential: 0.01~1.5 V)
Fig.8  Schematic of the preparation process of the MgInAlTi alloy by DBDP-milling[48]
[1] Benjamin J S.Metall Trans, 1970; 1: 2943
[2] Koch C C.Nanostruct Mater, 1993; 2: 109
[3] Dai L Y, Chen Q L, Lin S F, Ouyang L Z.Mater Rev, 2009; 23(2): 59
[3] (戴乐阳, 陈清林, 林少芬, 欧阳柳章. 材料导报, 2009; 23(2): 59)
[4] Dai L Y, Zeng M Q, Tong Y Q, Ouyang L Z, Zhu M, Li Y Y.J Funct Mater, 2005; 36: 1158
[4] (戴乐阳, 曾美琴, 童燕青, 欧阳柳章, 朱敏, 李元元. 功能材料, 2005; 36: 1158)
[5] Mordyuk B N, Prokopenko G I.Ultrasonics, 2004; 42: 43
[6] Calka A, Radlinski A P.Mater Sci Eng, 1991; A134: 1350
[7] Wang D P, Li X D, Chang Y, Qi M.J Rare Earth (Engl Lett), 2013; 31: 366
[8] Chelvane J A, Palit M, Basumatary H, Pandian S.J Magn Magn Mater, 2013; 343: 144
[9] Luton M J, Jayanth C S, Disko M M, Matrasa1 S, Vallon J. In: Kear B H, McCandlish L E, Polk D E, Siegel R W eds., MRS Proceedings, Cambridge University Press, 1988; 132: 79
[10] Chung K H, He J H, Shin D H.Mater Sci Eng, 2003; A356: 23
[11] Calka A, Wexler D.Nature, 2002; 419: 147
[12] Calka A, Wexler D.J Metastable Nanocryst Mater, 2004; 20: 111
[13] Mosbah A, Calka A, Wexler D.J Alloys Compd, 2006; 424: 279
[14] Varin R A, Chiu C, Li S, Calka A, Wexler D.J Alloys Compd, 2004; 370: 230
[15] Calka A, Mosbah A, Stanford N, Balaz P.J Alloys Compd, 2008; 455: 285
[16] Needham S A, Calka A, Wang G X, Mosbah A, Liu H K.Electochem Commun, 2006; 8: 434
[17] Yuan Q, Zheng Y, Yu H.Int J Refract Met Hard Mater, 2009; 27: 121
[18] Quan Y, Zheng Y, Yu H Z.Trans Nonferrous Met Soc China, 2011; 21: 1545
[19] Zhu M, Dai L Y, Cao B, Zeng M Q, Ouyang L Z, Tong Y Q, Li B.China Patent, ZL200510036231, 2007)
[19] (朱敏, 戴乐阳, 曹彪, 曾美琴, 欧阳柳章, 童燕青, 李北. 中国专利, ZL200510036231, 2007)
[20] Wang X X.High Volt Eng, 2009; 35(1): 1
[20] (王新新. 高电压技术, 2009; 35(1): 1)
[21] Yang X P, Dai L Y, Zeng M Q, Ouyang L Z.Mater Rev, 2010; 24: 320
[21] (杨小平, 戴乐阳, 曾美琴, 欧阳柳章. 材料导报, 2010; 24: 320)
[22] Sun Q D.Master Thesis, Tianjin University, 2013
[22] (孙启迪. 天津大学硕士学位论文, 2013)
[23] Dai L Y, Lin S F, Chen Q L, Yang X P.Mod Manuf Eng, 2010; 5(5): 48
[23] (戴乐阳, 林少芬, 陈清林, 杨小平. 现代制造工程, 2010; 5(5): 48)
[24] Dai L Y.PhD Dissertation, South China University of Technology, Guangzhou, 2006
[24] (戴乐阳, 华南理工大学博士学位论文, 广州, 2006)
[25] Zhu M, Dai L Y, Gu N S, Cao B, Ouyang L Z.J Alloys Compd, 2009; 478: 624
[26] Dai L Y.Acta Metall Sin (Engl Lett), 2013; 26: 63
[27] Dai L Y, Cao B, Zhu M.Acta Metall Sin (Engl Lett), 2006; 19: 411
[28] Conrad H, Yang D.Acta Mater, 2002; 50: 2851
[29] Chen Z H.Master Thesis, South China University of Technology, Guangzhou, 2015
[29] (陈志鸿. 华南理工大学硕士学位论文, 广州, 2015)
[30] Jia C X, Chen P, Wang Q, Wang J, Ren R.Chin J Mater Res, 2015; 29: 10
[30] (贾彩霞, 陈平, 王乾, 王静, 任荣. 材料研究学报, 2015; 29: 10)
[31] Meng R G.Master Thesis, Jimei University, Xiamen, 2013
[31] (孟荣刚. 集美大学硕士学位论文, 厦门, 2013)
[32] Yang X P.Master Thesis, South China University of Technology, Guangzhou, 2010
[32] (杨小平. 华南理工大学硕士学位论文, 广州, 2010)
[33] Dai L Y, Lin S F, Chen J F, Zeng M Q, Zhu M.Int J Refract Met Hard Mater, 2012; 30: 48
[34] Zhu M, Bao X Y, Yang X P, Gu N S, Wang H, Zeng M Q, Dai L Y.Metall Mater Trans, 2011; 42: 2930
[35] Wang W, Lu Z C, Chen Z H, Zeng M Q, Wang H, Zhu M.J Rare Earth (Engl Lett), DOI: 10.1007/S12598-016-0769-5
[36] Hu R Z, Yang L C, Zhu M.Chin Sci Bull (Chin Ver), 2013; 58: 3140
[36] (胡仁宗, 杨黎春, 朱敏. 科学通报(中文版), 2013; 58: 3140)
[37] Hu R Z.PhD Dissertation, South China University of Technology, Guangzhou, 2011
[37] (胡仁宗. 华南理工大学博士学位论文, 广州, 2011)
[38] Liu H, Hu R, Zeng M, Liu J W, Zhu M.J Mater Chem, 2012; 22A: 8022
[39] Hui L, Hu R Z, Sun W, Zeng M Q, Yang L C, Liu J W, Zhu M,J Power Sources, 2013; 242: 114
[40] Zhang H Y, Hu R Z, Liu H, Sun W, Lu Z C, Liu J W, Yang L C, Zhang Y, Zhu M.J Mater Chem, 2016; 4A: 10321
[41] W. Sun, R.Z.Hu, H. Liu, M. Q. Zeng, M. Zhu.J Power Sources, 2014; 268:610
[42] Ouyang L Z, Guo L N, Cai W H, Ye J S, Hu R Z, Liu J W, Yang LC, Zhu M.J Mater Chem A, 2014; 2A: 11280
[43] Wang Y K, Yang L C, Hu R Z, Sun W, Liu J W, Ouyang L Z, Yuan B, Wang H, Zhu M.J Power Sources, 2015; 288: 314
[44] Zaluska A, Zaluski L, Str?m-Olsen J O.J Alloys Compd, 1999; 288: 217
[45] Huot J, Tremblay M L, Schulz R.J Alloys Compd, 2003; 356: 603
[46] Lu Y S, Zhu M, Wang H, Li Z M, Ouyang L Z, Liu J W.Int J Hydrogen Energy, 2014; 39: 14033
[47] Ouyang L Z, Cao Z J, Wang H, Liu J W, Sun D L, Zhang Q A, Zhu M.J Alloys Compd, 2014; 586: 113
[48] Cao Z J, Ouyang L Z, Wu Y, Wang H, Liu J W, Fang F, Sun D L, Zhang Q A, Zhu M.Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling.J Alloys Compd, 2015; 623: 354
[49] Ouyang L Z, Cao Z J, Li L L, Wang H, Liu J W, Min D, Chen Y W, Xiao F M, Tang R H, Zhu M.Int J Hydrogen Energy, 2014; 39: 12765
[50] Dai L Y, Zhang B J, Lin S F, Liu Z J, Wang W C.Chin J Nonferrous Met, 2015; 1: 171
[50] (戴乐阳, 张宝剑, 林少芬, 刘志杰, 王文春. 中国有色金属学报, 2015; 1: 171)
[1] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[4] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[5] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] HOU Yubai, YU Yueguang, GUO Zhimeng. Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys[J]. 金属学报, 2021, 57(2): 247-256.
[8] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[9] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[10] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[11] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[12] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[13] Yucheng WU. Research Progress in Irradiation Damage Behavior of Tungsten and Its Alloys for Nuclear Fusion Reactor[J]. 金属学报, 2019, 55(8): 939-950.
[14] Yucheng WU. The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility[J]. 金属学报, 2019, 55(2): 171-180.
[15] Yingkai SHAO, Yuxi WANG, Zhibin YANG, Chunyuan SHI. Plasma-MIG Hybrid Welding Hot Cracking Susceptibility of 7075 Aluminum Alloy Based on Optimum of Weld Penetration[J]. 金属学报, 2018, 54(4): 547-556.
No Suggested Reading articles found!