|
|
Defect Control of Magnesium Alloy Gigacastings |
JIANG Bin, ZHANG Ang( ), SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng |
National Key Laboratory of Advanced Casting Technologies, National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China |
|
Cite this article:
JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings. Acta Metall Sin, 2025, 61(3): 383-396.
|
Abstract The demand for lightweighting is rapidly increasing to meet the carbon peak and neutrality goals. Gigacasting integrates stamping and welding processes into a single high-pressure die-casting operation, streamlining production workflows and considerably enhancing production efficiency, thereby accelerating advancements in automotive lightweighting. Magnesium alloys, which are the lightest metallic structural materials at present, are superior choices for lightweighting because of their low density, high strength, and excellent casting performance. Magnesium alloy gigacasting has enormous potential for automotive applications, enabling the production of lightweight automotive components with superior mechanical properties. However, this process faces challenges because magnesium alloys' active chemical properties and high susceptibility to hot tearing, combined with their large size, thin wall thickness, and complex geometries, make defects like porosity and hot tearing prevalent. These defects greatly impair the performance of gigacast components. Preventing and mitigating casting defects is critical for improving the yield and quality stability of magnesium alloy gigacastings, thereby facilitating their widespread application in industries like automotive and aerospace. To address these issues, the causes and control measures for three common defects (porosities, defect bands, and hot tearing) are briefly explored in this study. Progress and challenges in defect control, focusing on melt treatment, alloy development, process optimization, and structural design, are also outlined. This review aims to provide valuable insights into defect control strategies for developing high-performance magnesium alloy gigacastings.
|
Received: 03 September 2024
|
|
Fund: National Key Research and Development Program of China(2021YFB3701000);National Natural Science Foundation of China(52471118);National Natural Science Foundation of China(U21A2048);Young Elite Scientists Sponsorship Program by CAST(2022QNRC001) |
Corresponding Authors:
ZHANG Ang, Tel: 18811328068, E-mail: angzhang@cqu.edu.cn
|
1 |
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metal. Sin., 2021, 57: 1362
|
|
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
|
2 |
Yang Y, Xiong X M, Chen J, et al. Research advances of magnesium and magnesium alloys worldwide in 2022 [J]. J. Magnes. Alloy., 2023, 11: 2611
|
3 |
Li Y F, Zhang A, Li C M, et al. Recent advances of high strength Mg-RE alloys: Alloy development, forming and application [J]. J. Mater. Res. Technol., 2023, 26: 2919
|
4 |
Jiang B, Dong Z H, Zhang A, et al. Recent advances in micro-alloyed wrought magnesium alloys: Theory and design [J]. Trans. Nonferrous Met. Soc. Chin., 2022, 32: 1741
|
5 |
Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
|
6 |
Chen W T, Yang J Y, Yu W B, et al. One developed finite element model used in nano-layered flaky Ti2AlC MAX ceramic particles reinforced magnesium composite [J]. J. Magnes. Alloy., 2024, 12: 4219
|
7 |
Wang T L, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook [J]. J. Magnes. Alloy., 2022, 10: 326
|
8 |
Wang G G, Weiler J P. Recent developments in high-pressure die-cast magnesium alloys for automotive and future applications [J]. J. Magnes. Alloy., 2023, 11: 78
|
9 |
Zhang Z M, Yu J M, Xue Y, et al. Recent research and development on forming for large magnesium alloy components with high mechanical properties [J]. J. Magnes. Alloy., 2023, 11: 4054
|
10 |
Liu B, Yang J, Zhang X Y, et al. Development and application of magnesium alloy parts for automotive OEMs: A review [J]. J. Magnes. Alloy., 2023, 11: 15
|
11 |
Zhang J Y, Miao J S, Balasubramani N, et al. Magnesium research and applications: Past, present and future [J]. J. Magnes. Alloy., 2023, 11: 3867
|
12 |
Bai J Y, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: A review [J]. J. Magnes. Alloy., 2023, 11: 3609
|
13 |
Luo A A. Magnesium casting technology for structural applications [J]. J. Magnes. Alloy., 2013, 1: 2
|
14 |
Weiler J P. A review of magnesium die-castings for closure applications [J]. J. Magnes. Alloy., 2019, 7: 297
doi: 10.1016/j.jma.2019.02.005
|
15 |
Li Z X, Li D J, Zhou W K, et al. Characterization on the formation of porosity and tensile properties prediction in die casting Mg alloys [J]. J. Magnes. Alloy., 2022, 10: 1857
|
16 |
Wu M W, Hou Y Y, Hua L, et al. On the deformation behavior of heterogeneous microstructure and its effect on the mechanical properties of die cast AZ91D magnesium alloy [J]. J. Magnes. Alloy., 2022, 10: 1981
|
17 |
Zhu S M, Abbott T B, Nie J F, et al. Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44 [J]. J. Magnes. Alloy., 2021, 9: 1537
|
18 |
Prasad S V S, Prasad S B, Verma K, et al. The role and significance of Magnesium in modern day research-A review [J]. J. Magnes. Alloy., 2022, 10: 1
|
19 |
Li P J, Xie Y R. Transformation and development of subverting traditional automotive manufacturing model [J]. Chin. Ind. Inf. Technol., 2020, (10): 48
|
|
李培杰, 谢禹睿. 颠覆传统汽车制造模式的变革发展 [J]. 中国工业和信息化, 2020, (10): 48
|
20 |
Tao Y L, Zhang M Y, Xiang K J, et al. Integrated die casting promotes the innovation and development of aluminum alloy materials [J]. Foundry Equip. Technol., 2022, (4): 67
|
|
陶永亮, 张明怡, 向科军 等. 一体化压铸促进铝合金材料创新与发展 [J]. 铸造设备与工艺, 2022, (4): 67
|
21 |
Li T, Song J F, Zhang A, et al. Progress and prospects in Mg-alloy super-sized high pressure die casting for automotive structural components [J]. J. Magnes. Alloy., 2023, 11: 4166
|
22 |
Tao Y L, Yang J J, Liu X T, et al. Large die-casting die is the key technology to realize integrated die-casting [J]. Die Mould Manuf., 2023, 23: 47
|
|
陶永亮, 杨建京, 刘雪停 等. 大型压铸模是实现一体化压铸的关键技术 [J]. 模具制造, 2023, 23: 47
|
23 |
Xiao X Y. “Jin” precedes “opportunity” leading the new era of die casting [J]. Chin. Ind. Inf. Technol., 2023, (11): 28
|
|
肖昕宇. “劲”占先“机”引领压铸新时代 [J]. 中国工业和信息化, 2023, (11): 28
|
24 |
Jiang B, Zhang A, Yang Y, et al. Recent advances in numerical simulation of solidification process in cast magnesium alloys [J]. Foundry, 2024, 73: 1043
|
|
蒋 斌, 张 昂, 杨 艳 等. 铸造镁合金凝固过程数值模拟研究进展 [J]. 铸造, 2024, 73: 1043
|
25 |
Zhang A, Guo Z P, Jiang B, et al. Phase-field modeling of microstructure and gas porosity evolution during solidification of alloys: A review [J]. Chin. J. Nonferr. Metals, 2021, 31: 2976
|
|
张 昂, 郭志鹏, 蒋 斌 等. 合金凝固组织和气孔演变相场模拟研究进展 [J]. 中国有色金属学报, 2021, 31: 2976
|
26 |
Zhang A. Multi-physical phase-field modeling of microstructure and hydrogen porosity evolution during solidification of aluminum alloys [D]. Beijing: Tsinghua University, 2020
|
|
张 昂. 铝合金多物理场凝固组织和氢气孔演变的相场建模研究 [D]. 北京: 清华大学, 2020
|
27 |
Xiong S M, Du J L, Guo Z P, et al. Characterization and modeling study on interfacial heat transfer behavior and solidified microstructure of die cast magnesium alloys [J]. Acta Metal. Sin., 2018, 54: 174
|
|
熊守美, 杜经莲, 郭志鹏 等. 镁合金压铸过程界面传热行为及凝固组织结构的表征与模拟研究 [J]. 金属学报, 2018, 54: 174
doi: 10.11900/0412.1961.2017.00418
|
28 |
Yang H M, Pu Z M, Guo Z P, et al. A study of metal/die interfacial heat transfer behavior of vacuum die cast pure copper [J]. China Foundry, 2020, 17: 206
|
29 |
Xie H C, Wang J, Li Y F, et al. Fast shot speed induced microstructure and mechanical property evolution of high pressure die casting Mg-Al-Zn-RE alloys [J]. J. Mater. Process. Technol., 2024, 331: 118523
|
30 |
Yang Z F, Maurey A, Kang J D, et al. 2D and 3D characterization of pore defects in die cast AM60 [J]. Mater. Charact., 2016, 114: 254
|
31 |
Li X, Xiong S M, Guo Z. Correlation between porosity and fracture mechanism in high pressure die casting of AM60B alloy [J]. J. Mater. Sci. Technol., 2016, 32: 54
doi: 10.1016/j.jmst.2015.10.002
|
32 |
Yu W B, Ma C S, Ma Y H, et al. Correlation of 3D defect-band morphologies and mechanical properties in high pressure die casting magnesium alloy [J]. J. Mater. Process. Technol., 2021, 288: 116853
|
33 |
Song J F, Zhao H, Liao J G, et al. Comparison on hot tearing behavior of binary Mg-Al, Mg-Y, Mg-Gd, Mg-Zn, and Mg-Ca alloys [J]. Metall. Mater. Trans., 2022, 53A: 2986
|
34 |
Barbagallo S. Shrinkage porosity in thin walled AM60 HPDC magnesium alloy U-shaped box [J]. Int. J. Cast Met. Res., 2004, 17: 364
|
35 |
Zhang A, Su D B, Li C M, et al. Investigation of bubble dynamics in a micro-channel with obstacles using a conservative phase-field lattice Boltzmann method [J]. Phys. Fluids, 2022, 34: 043312
|
36 |
Zhang A, Su D B, Li C M, et al. Three-dimensional phase-field lattice-Boltzmann simulations of a rising bubble interacting with obstacles: Shape quantification and parameter dependence [J]. Phys. Fluids, 2022, 34: 103301
|
37 |
Zhang A, Guo Z P, Wang Q G, et al. Three-dimensional numerical simulation of bubble rising in viscous liquids: A conservative phase-field lattice-Boltzmann study [J]. Phys. Fluids, 2019, 31: 063106
|
38 |
Zhang A, Du J L, Guo Z P, et al. Conservative phase-field method with a parallel and adaptive-mesh-refinement technique for interface tracking [J]. Phys. Rev., 2019, 100E: 023305
|
39 |
Cheng J, Zhang A, Qin L, et al. Interaction between growing dendrite and rising bubble under convection [J]. Int. J. Multiphase Flow, 2024, 170: 104656
|
40 |
Zhang A, Jiang B, Guo Z P, et al. Solution to multiscale and multiphysics problems: A phase-field study of fully coupled thermal-solute-convection dendrite growth [J]. Adv. Theory Simul., 2021, 4: 2000251
|
41 |
Zhang A, Meng S X, Guo Z P, et al. Dendritic growth under natural and forced convection in Al-Cu alloys: From equiaxed to columnar dendrites and from 2D to 3D phase-field simulations [J]. Metall. Mater. Trans., 2019, 50B: 1514
|
42 |
Zhang A, Guo Z P, Xiong S M. Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt [J]. China Foundry, 2017, 14: 373
|
43 |
Yang Q, Zhang A, Jiang B, et al. Numerical investigation of eutectic growth dynamics under convection by 3D phase-field method [J]. Comput. Math. Appl., 2022, 114: 83
|
44 |
Zhang A, Guo Z P, Jiang B, et al. Multiphase and multiphysics modeling of dendrite growth and gas porosity evolution during solidification [J]. Acta Mater., 2021, 214: 117005
|
45 |
Zhang A, Du J L, Zhang X P, et al. Phase-field modeling of microstructure evolution in the presence of bubble during solidification [J]. Metall. Mater. Trans., 2020, 51A: 1023
|
46 |
Zhang A, Guo Z, Wang Q, et al. Multiphase-field modelling of hydrogen pore evolution during alloy solidification [J]. IOP Conf. Ser. Mater. Sci. Eng., 2020, 861: 012021
|
47 |
Wu M W, Hou Y Y, Li X B, et al. Microstructure characteristics and formation mechanism of defect band in die cast magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 117
|
|
吴孟武, 侯莹滢, 李晓波 等. 压铸镁合金缺陷带的组织特征及形成机理 [J]. 特种铸造及有色合金, 2020, 40: 117
doi: 10.15980/j.tzzz.2020.02.001
|
48 |
Gourlay C M, Dahle A K. Dilatant shear bands in solidifying metals [J]. Nature, 2007, 445: 70
|
49 |
Li X B, Guo Z P, Xiong S M. Influence of melt flow on the formation of defect band in high pressure die casting of AZ91D magnesium alloy [J]. Mater. Charact., 2017, 129: 344
|
50 |
Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys [J]. J. Light Met., 2001, 1: 61
|
51 |
Deda E, Berman T D, Allison J E. The influence of al content and thickness on the microstructure and tensile properties in high-pressure die cast magnesium alloys [J]. Metall. Mater. Trans., 2017, 48A: 1999
|
52 |
Yang K V, Cáceres C H, Nagasekhar A V, et al. The skin effect and the yielding behavior of cold chamber high pressure die cast Mg-Al alloys [J]. Mater. Sci. Eng., 2012, A542: 49
|
53 |
Li X B, Xiong S M, Guo Z P. Characterization of the grain structures in vacuum-assist high-pressure die casting AM60B alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 619
|
54 |
Hou Y Y, Wu M W, Tian B H, et al. Characteristics and formation mechanisms of defect bands in vacuum-assisted high-pressure die casting AE44 alloy [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 1852
|
55 |
Otarawanna S, Gourlay C M, Laukli H I, et al. The thickness of defect bands in high-pressure die castings [J]. Mater. Charact., 2009, 60: 1432
|
56 |
Zhang T T, Yu W B, Ma C S, et al. The effect of different high pressure die casting parameters on 3D microstructure and mechanical properties of AE44 magnesium alloy [J]. J. Magnes. Alloy., 2023, 11: 3141
|
57 |
Le T H, Wei Q, Wang J H, et al. Effect of different casting techniques on the microstructure and mechanical properties of AE44-2 magnesium alloy [J]. Mater. Res. Express, 2020, 7: 116513
|
58 |
Yang Z Z, Wang K, Fu P H, et al. Influence of alloying elements on hot tearing susceptibility of Mg-Zn alloys based on thermodynamic calculation and experimental [J]. J. Magnes. Alloy., 2018, 6: 44
|
59 |
Vinodh G, Nodooshan H R J, Li D J, et al. Effect of Al content on hot-tearing susceptibility of Mg-10Zn-xAl alloys [J]. Metall. Mater. Trans., 2020, 51A: 1897
|
60 |
Bai S W, Wang F, Wang Z, et al. Effect of Ca content on hot tearing susceptibility of Mg-4Zn-xCa-0.3Zr (x = 0.5, 1, 1.5, 2) alloys [J]. Int. J. Met., 2021, 15: 1298
|
61 |
Yang Z Y, Li M Q, Song J F, et al. Optimized hot tearing resistance of VW63K magnesium alloy [J]. Int. J. Met., 2022, 16: 1858
|
62 |
Zhu G N, Wang Z, Qiu W Y, et al. Effect of Yttrium on hot tearing susceptibility of Mg-6Zn-1Cu-0.6Zr alloys [J]. Int. J. Met., 2020, 14: 179
|
63 |
Su X, Feng Z J, Wang F, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of WE43 magnesium alloy [J]. Int. J. Met., 2021, 15: 576
|
64 |
Song J F, Wang Z, Huang Y D, et al. Hot tearing characteristics of Mg-2Ca-xZn alloys [J]. J. Mater. Sci., 2016, 51: 2687
|
65 |
Xia Y T, Zheng J, Chen J, et al. The ductility variation of high-pressure die-cast AE44 alloy: The role of inhomogeneous microstructure [J]. Metall. Mater. Trans., 2021, 52A: 2274
|
66 |
Zhang Y F, Zheng J, Xia Y T, et al. Porosity quantification for ductility prediction in high pressure die casting AM60 alloy using 3D X-ray tomography [J]. Mater. Sci. Eng., 2020, A772: 138781
|
67 |
Li X, Xiong S M, Guo Z. Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy [J]. J. Mater. Process. Technol., 2016, 231: 1
|
68 |
Ma C S, Yu W B, Zhang T T, et al. The effect of slow shot speed and casting pressure on the 3D microstructure of high pressure die casting AE44 magnesium alloy [J]. J. Magnes. Alloy., 2023, 11: 753
|
69 |
Lee C, Youn J, Kim Y. Effect of strain rate on the defect susceptibility of tensile properties to porosity variation [J]. Mater. Sci. Eng., 2017, A683: 135
|
70 |
Lee C D, Shin K S. Effect of microporosity on the tensile properties of AZ91 magnesium alloy [J]. Acta Mater., 2007, 55: 4293
|
71 |
Zhou B, Meng D H, Wu D, et al. Characterization of porosity and its effect on the tensile properties of Mg-6Gd-3Y-0.5Zr alloy [J]. Mater. Charact., 2019, 152: 204
doi: 10.1016/j.matchar.2019.04.021
|
72 |
Susan D F, Crenshaw T B, Gearhart J S. The effects of casting porosity on the tensile behavior of investment cast 17-4PH stainless steel [J]. J. Mater. Eng. Perform., 2015, 24: 2917
|
73 |
Mathieu S, Rapin C, Steinmetz J, et al. A corrosion study of the main constituent phases of AZ91 magnesium alloys [J]. Corros. Sci., 2003, 45: 2741
|
74 |
Yu B, Jia Z, Li Y J, et al. Research progress of purification technology in magnesium alloy melt [J]. Foundry Technol., 2021, 42: 635
|
|
喻 兵, 贾 征, 李又佳 等. 镁合金熔体净化技术研究进展 [J]. 铸造技术, 2021, 42: 635
|
75 |
Fan X Z, Wang R, Ma J, et al. Effect of mixed-RE on fluidity and mechanical properties of die casting AZ91D magnesium alloy [J]. Foundry Technol., 2022, 43: 285
|
|
樊晓泽, 王 瑞, 马 骏 等. 混合稀土对AZ91D压铸镁合金流动性及力学性能的影响 [J]. 铸造技术, 2022, 43: 285
|
76 |
Zha J L. A study on Mg melt continuous non-flux purification theory and key techniques [D]. Chongqing: Chongqing University, 2018
|
|
查吉利. 镁熔体无熔剂连续精炼理论及关键技术研究 [D]. 重庆: 重庆大学, 2018
|
77 |
Weiler J P. Exploring the concept of castability in magnesium die-casting alloys [J]. J. Magnes. Alloy., 2021, 9: 102
doi: 10.1016/j.jma.2020.05.008
|
78 |
Ma C S, Yu W B, Pi X F, et al. Study of Mg-Al-Ca magnesium alloy ameliorated with designed Al8Mn4Gd phase [J]. J. Magnes. Alloy., 2020, 8: 1084
|
79 |
Li S B, Yang X Y, Hou J T, et al. A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
|
80 |
Ni J, Jin L, Zeng J, et al. Development of high-strength magnesium alloys with excellent ignition-proof performance based on the oxidation and ignition mechanisms: A review [J]. J. Magnes. Alloy., 2023, 11: 1
|
81 |
You J, Wang C, Shang S L, et al. Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys [J]. J. Magnes. Alloy., 2023, 11: 2006
|
82 |
Bai Y, Ye B, Wang L Y, et al. A novel die-casting Mg alloy with superior performance: Study of microstructure and mechanical behavior [J]. Mater. Sci. Eng., 2021, A802: 140655
|
83 |
Rong J, Xiao W L, Fu Y, et al. A high performance Mg-Al-Ca alloy processed by high pressure die casting: Microstructure, mechanical properties and thermal conductivity [J]. Mater. Sci. Eng., 2022, A849: 143500
|
84 |
Wang F, Dong H K, Sun S J, et al. Microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca-xSn alloys [J]. J. Mater. Eng. Perform., 2018, 27: 612
|
85 |
Yang Q, Guan K, Bu F Q, et al. Microstructures and tensile properties of a high-strength die-cast Mg-4Al-2RE-2Ca-0.3Mn alloy [J]. Mater. Charact., 2016, 113: 180
|
86 |
Yang Q, Bu F Q, Zheng T, et al. Influence of trace Sr additions on the microstructures and the mechanical properties of Mg-Al-La-based alloy [J]. Mater. Sci. Eng., 2014, A619: 256
|
87 |
Li X. Research on microstructures and properties of moderate or high strength and high thermal conductivity Mg-Al-Ce series die-cast magnesium alloys [D]. Xi'an: Xi'an University of Technology, 2022
|
|
李 潇. 中强高导热Mg-Al-Ce系压铸镁合金组织与性能研究 [D]. 西安: 西安理工大学, 2022
|
88 |
Han Q, Zhang J. Fluidity of alloys under high-pressure die casting conditions: Flow-choking mechanisms [J]. Metall. Mater. Trans., 2020, 51B: 1795
|
89 |
Sharifi P, Jamali J, Sadayappan K, et al. Quantitative experimental study of defects induced by process parameters in the high-pressure die cast process [J]. Metall. Mater. Trans., 2018, 49A: 3080
|
90 |
Zhang J L, Chen L, Tian J J, et al. Numerical simulation and die casting process optimization of magnesium alloy vehicle head-up display bracket (HUD) [J]. Spec. Cast. Nonferrous Alloy., 2023, 43: 1141
|
|
张继龙, 陈 龙, 田晶晶 等. 镁合金汽车抬头显示支架压铸工艺模拟与优化 [J]. 特种铸造及有色合金, 2023, 43: 1141
|
91 |
Dou K, Lordan E, Zhang Y J, et al. A complete computer aided engineering (CAE) modelling and optimization of high pressure die casting (HPDC) process [J]. J. Manuf. Process., 2020, 60: 435
doi: 10.1016/j.jmapro.2020.10.062
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|