Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (6): 826-836    DOI: 10.11900/0412.1961.2023.00188
Research paper Current Issue | Archive | Adv Search |
Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions
LI Dayu1, YAO Zhihao1(), ZHAO Jie1, DONG Jianxin1, GUO Jing2, ZHAO Yu2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 AECC Hunan Powerplant Research Institute, Zhuzhou 412002, China
Cite this article: 

LI Dayu, YAO Zhihao, ZHAO Jie, DONG Jianxin, GUO Jing, ZHAO Yu. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions. Acta Metall Sin, 2025, 61(6): 826-836.

Download:  HTML  PDF(4431KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The FGH4720Li superalloy is produced by GH4720Li through the powder metallurgy (P/M) process, a method that effectively addresses the shortcomings of the original alloy production process, such as significant segregation, low alloying levels, and manufacturing difficulties. The P/M method also results in a finer and more uniform microstructure. However, during the service life of superalloys, the thermodynamic conditions can degrade the microstructure, potentially affecting their mechanical properties. There is currently limited research on how the microstructure and properties of FGH4720Li P/M superalloy evolve under near-service conditions. Therefore, it is essential to investigate this evolution to provide valuable insights for the manufacture of turbine disks. In this study, the microstructure evolution of FGH4720Li P/M superalloy and the variations in its yield strength have been examined after subjecting it to stress rupture for 500, 1000, and 2000 h at 600 and 650 oC under a stress level of 500 MPa. The results show that the yield strength of FGH4720Li P/M superalloy remains relatively high, at 1120 MPa, after stress rupture at 650 oC. Furthermore, the microstructure of FGH4720Li P/M superalloy undergoes a complex transformation during stress rupture. The secondary γ' phase's morphology gradually changes from an ellipsoidal shape to a flowerlike shape and ultimately to a cubic shape with rounded corners. The coarsening in the polymerization growth of tertiary γ' phases is also observed. To understand the changes in yield strength after stress rupture, a precipitation strengthening prediction model specifically designed for high γ' phase content and a multi-mode distribution of γ' phases was utilized. This calculation confirmed that the alteration in the content and size of the tertiary γ' phase is the primary factor responsible for the yield strength changes in the alloy.

Key words:  P/M superalloy      stress rupture test      microstructure evolution      yield strength     
Received:  25 April 2023     
ZTFLH:  TG132.3  
Fund: National Natural Science Foundation of China(52271087);National Science and Technology Major Project(J2017-VI-0017-089)
Corresponding Authors:  YAO Zhihao, professor, Tel: (010)62332884, E-mail: zhihaoyao@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00188     OR     https://www.ams.org.cn/EN/Y2025/V61/I6/826

Fig.1  SEM images showing the distribution character-istics of different γ' phases in heat treated FGH4720Li powder metallurgy (P/M) superalloy
(a) primary γ' phase
(b) secondary γ' phase
(c) tertiary γ' phase
Fig.2  EBSD images of FGH4720Li P/M superalloy with inverse pole figure color after stress rupture at 600 oC (a-c) and 650 oC (d-f) for 500 h (a, d), 1000 h (b, e), and 2000 h (c, f)
Fig.3  Evolutions of grain size in FGH4720Li P/M superalloy after stress rupture under different conditions
Fig.4  SEM images and particle size distributions (insets) of secondary γ' phase in FGH4720Li P/M superalloy after stress rupture at 600 oC (a-c) and 650 oC (d-f) for 500 h (a, d), 1000 h (b, e), and 2000 h (c, f)
Fig.5  High magnified SEM images of secondary γ' phase in FGH4720Li P/M superalloy after stress rupture at 600 oC (a-c) and 650 oC (d-f) for 500 h (a, d), 1000 h (b, e), and 2000 h (c, f)
Fig.6  SEM images of tertiary γ' phase in FGH4720Li P/M superalloy after stress rupture at 600 oC (a-c) and 650 oC (d-f) for 500 h (a, d), 1000 h (b, e), and 2000 h (c, f) (Circles in Figs.6c-f show the gourd shaped tertiary γ' phases)
Fig.7  Schematic showing the evolution of grain size and γ' phase morphology characteristics in FGH4720Li P/M superalloy during stress rupture
Fig.8  Bright-field TEM images of FGH4720Li P/M superalloy after stress rupture at 600 oC (a) and 650 oC (b) for 2000 h (ESF—extended stacking fault)
Fig.9  Tensile properties of FGH4720Li P/M superalloy at 650 oC after aging and stress rupture at different time
(a) yield strength (b) ultimate tensile strength
Experimental condition

fs

%

rs

nm

ft

%

rt

nm

650 oC, 500 h33.2104.93.1212.4
650 oC, 1000 h34.3108.02.8312.6
650 oC, 2000 h35.9114.92.2712.9
Table 1  Average volume fractions and sizes of the secondary and tertiary γ' phases under different stress rupture conditions
ParameterValueUnit
γAPB[6]0.30J·m-2
b[7]0.256nm
kY[30]710MPa·μm1/2
μ[35]70.3GPa
M[41]3-
Table 2  Parameters for calculating yield strength[6,7,30,35,41]
Fig.10  Comparisons of theoretical calculated and experimental yield strengths of FGH4720Li P/M superalloy after stress rupture at 650 oC for different time
1 Yang J J, Zhang C S, Li H J, et al. Effect of tension-torsion coupled loading on the mechanical properties and deformation mechanism of GH4169 superalloys [J]. Acta Metall. Sin., 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
杨俊杰, 张昌盛, 李洪佳 等. 拉伸-扭转复合加载对镍基高温合金GH4169力学性能与变形机理的影响 [J]. 金属学报, 2024, 60: 30
doi: 10.11900/0412.1961.2022.00142
2 Li F L, Bai Y R, Meng L C, et al. Impact of aging heat treatment on microstructure and mechanical properties of a newly developed GH4096 disk superalloy [J]. Mater. Charact., 2020, 161: 110175
3 Locq D, Caron P. On some advanced nickel-based superalloys for disk applications [J]. Aerosp. Lab, 2011, 3: 1
4 Azadi M, Marbout A, Safarloo S, et al. Effects of solutioning and ageing treatments on properties of Inconel-713C nickel-based superalloy under creep loading [J]. Mater. Sci. Eng., 2018, A711: 195
5 Jiang X W, Wang D, Xie G, et al. The effect of long-term thermal exposure on the microstructure and stress rupture property of a directionally solidified Ni-based superalloy [J]. Metall. Mater. Trans., 2014, 45A: 6016
6 Jackson M P, Reed R C. Heat treatment of UDIMET 720Li: The effect of microstructure on properties [J]. Mater. Sci. Eng., 1999, A259: 85
7 Tan L M, Li Y P, Deng W K, et al. Tensile properties of three newly developed Ni-base powder metallurgy superalloys [J]. J. Alloys Compd., 2019, 804: 322
8 Deng W K, Zhang D, Wu H Y, et al. Prediction of yield strength in a polycrystalline nickel base superalloy during interrupt cooling [J]. Scr. Mater., 2020, 183: 139
9 Yao Z H, Hou J, Chen Y, et al. Effect of micron-sized particles on the crack growth behavior of a Ni-based powder metallurgy superalloy [J]. Mater. Sci. Eng., 2022, A860: 144242
10 Radis R, Schaffer M, Albu M, et al. Multimodal size distributions of γ′ precipitates during continuous cooling of UDIMET 720 Li [J]. Acta Mater., 2009, 57: 5739
11 Wan Z P, Hu L X, Sun Y, et al. Effect of solution treatment on microstructure and tensile properties of a U720LI Ni-based superalloy [J]. Vacuum, 2018, 156: 248
12 Mao J, Chang K M, Yang W H, et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI [J]. Metall. Mater. Trans., 2001, 32A: 2441
13 Huang Z L, Xie X F, Gu Y, et al. Tensile properties of Ni-based GH4720Li superalloys with different microstructures at 650 oC [J]. Chin. J. Rare Met., 2021, 45: 1269
黄子琳, 谢兴飞, 谷 雨 等. GH4720Li镍基合金显微组织对650 ℃拉伸性能影响 [J]. 稀有金属, 2021, 45: 1269
14 Yuan Y, Gu Y F, Cui C Y, et al. Creep mechanisms of U720Li disc superalloy at intermediate temperature [J]. Mater. Sci. Eng., 2011, A528: 5106
15 Terzi S, Couturier R, Guétaz L, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse-grained superalloy [J]. Mater. Sci. Eng., 2008, A483-484: 598
16 Zhao G D, Zang X M, Jing Y, et al. Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li [J]. Mater. Sci. Eng., 2021, A815: 141293
17 Wang T, Li Z, Fu S H, et al. Hot deformation behavior and microstructure of U720Li alloy [J]. Adv. Mater. Res., 2013, 709: 143
18 Pang H T, Reed P A S. Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li [J]. Mater. Sci. Eng., 2007, A448: 67
19 Tucker A M, Henderson M B, Wilkinson A J, et al. High temperature fatigue crack growth in powder processed nickel based superalloy U720Li [J]. Mater. Sci. Technol., 2002, 18: 349
20 Liu C, Yao Z H, Jiang H, et al. The feasibility and process control of uniform equiaxed grains by hot deformation in GH4720Li alloy with millimeter-level coarse grains [J]. Acta Metall. Sin., 2021, 57: 1309
doi: 10.11900/0412.1961.2020.00415
刘 超, 姚志浩, 江 河 等. GH4720Li合金毫米级粗大晶粒热变形获得均匀等轴晶粒的可行性及工艺控制 [J]. 金属学报, 2021, 57: 1309
21 Liu C, Yao Z H, Guo J, et al. Microstructure evolution behavior of powder superalloy FGH4720Li at near service temperature [J]. Acta Metall. Sin., 2021, 57: 1549
doi: 10.11900/0412.1961.2021.00140
刘 超, 姚志浩, 郭 婧 等. 粉末高温合金FGH4720Li在近服役温度下的组织演变规律 [J]. 金属学报, 2021, 57: 1549
22 Li M Z, Coakley J, Isheim D, et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. J. Alloys Compd., 2018, 732: 765
23 Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ′ phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
胡本芙, 刘国权, 吴 凯 等. 镍基粉末冶金高温合金中γ′相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257
doi: 10.3724/SP.J.1037.2011.00731
24 Kong W W, Wang Y Q, Yuan C, et al. Microstructural evolution and stress rupture behaviour of a Ni-Based wrought superalloy during thermal exposure [J]. Mater. Sci. Eng., 2021, A822: 141659
25 Schulz F, Li H Y, Kitaguchi H, et al. Influence of tertiary gamma prime (γ′) size evolution on dwell fatigue crack growth behavior in CG RR1000 [J]. Metall. Mater. Trans., 2018, 49A: 3874
26 Raynor D, Silcock J M. Strengthening mechanisms in γ′ precipitating alloys [J]. Met. Sci. J., 1970, 4: 121
27 Dang C X, Zhang P, Li J, et al. The role of <112> {111} slip in the initial plastic deformation of Ni-base superalloys at room temperature [J]. Mater. Charact., 2020, 170: 110648
28 Zhang P, Yuan Y, Li B, et al. Tensile deformation behavior of a new Ni-base superalloy at room temperature [J]. Mater. Sci. Eng., 2016, A655: 152
29 Goodfellow A J. Strengthening mechanisms in polycrystalline nickel-based superalloys [J]. Mater. Sci. Technol., 2018, 34: 1793
30 Kozar R W, Suzuki A, Milligan W W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys [J]. Metall. Mater. Trans., 2019, 40A: 1588
31 Nembach E, Neite G. Precipitation hardening of superalloys by ordered γ′-particles [J]. Prog. Mater. Sci., 1985, 29: 177
32 Zhao C L, Wang Q, Tang Y, et al. Microstructure and property stability of powder metallurgy nickel-based U720Li superalloy during long-term aging [J]. Rare Met. Mater. Eng., 2022, 51: 2356
33 Yao Z H, Dong J X, Chen X, et al. Gamma prime phase evolution during long-time exposure for GH738 superalloy [J]. Trans. Mater. Heat Treat., 2013, 34(1): 31
姚志浩, 董建新, 陈 旭 等. GH738高温合金长期时效过程中γ′相演变规律 [J]. 材料热处理学报, 2013, 34(1): 31
34 Torster F, Baumeister G, Albrecht J, et al. Influence of grain size and heat treatment on the microstructure and mechanical properties of the nickel-base superalloy U 720 LI [J]. Mater. Sci. Eng., 1997, A234: 189
35 Xu Y L, Jin Q M, Xiao X S, et al. Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A [J]. Mater. Sci. Eng., 2011, A528: 4600
36 Huang H L, Liu G Q, Wang H, et al. Effect of cooling rate and resulting microstructure on tensile properties and deformation mechanisms of an advanced PM nickel-based superalloy [J]. J. Alloys Compd., 2019, 805: 1254
37 Osada T, Nagashima N, Gu Y, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scr. Mater., 2011, 64: 892
38 Galindo-Nava E I, Connor L D, Rae C M F. On the prediction of the yield stress of unimodal and multimodal γ′ nickel-base superalloys [J]. Acta Mater., 2015, 98: 377
39 Gerold V, Haberkorn H. On the critical resolved shear stress of solid solutions containing coherent precipitates [J]. Phys. Status Solidi, 1966, 16B: 675
40 Ahmadi M R, Povoden-Karadeniz E, Whitmore L, et al. Yield strength prediction in Ni-base alloy 718Plus based on thermo-kinetic precipitation simulation [J]. Mater. Sci. Eng., 2014, A608: 114
41 Kocks U F, Mecking H. Physics and phenomenology of strain hardening: The FCC case [J]. Prog. Mater. Sci., 2003, 48: 171
42 Zhang H K, Li Y, Ma T F, et al. Tailoring of nanoscale γ′ precipitates and unveiling their strengthening mechanisms in multimodal nickel-based superalloy GH4720Li [J]. Mater. Charact., 2022, 188: 111918
43 Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41B: 659
44 Gypen L A, Deruyttere A. Multi-component solid solution hardening: part 2 Agreement with experimental results [J]. J. Mater. Sci., 1977, 12: 1034
45 Reppich B, Schepp P, Wehner G. Some new aspects concerning particle hardening mechanisms in γ′ precipitating nickel-base alloys—II. Experiments [J]. Acta Metall., 1982, 30: 95
[1] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[2] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[3] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[4] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
[5] HAN Ying, WU Yuhang, ZHAO Chunlu, ZHANG Jingshi, LI Zhenmin, RAN Xu. High-Temperature Creep Behavior of Selective Laser Melting Manufactured Al-Si-Fe-Mn-Ni Alloy[J]. 金属学报, 2025, 61(1): 154-164.
[6] YU Dong, MA Weilong, WANG Yali, WANG Jincheng. Phase Field Modeling of Microstructure Evolution During Solidification and Subsequent Solid-State Phase Transformation of Au-Pt Alloys[J]. 金属学报, 2025, 61(1): 109-116.
[7] WANG Lin, WEI Chen, WANG Lei, WANG Jun, LI Jinshan. Simulation of Core-Shell Structure Evolution of Cu-Co Immiscible Alloys[J]. 金属学报, 2024, 60(9): 1239-1249.
[8] WANG Lijia, HU Li, MIAO Tianhu, ZHOU Tao, HE Qubo, LIU Xiangguo. Effect of Pre-Deformation on Mechanical Behavior and Microstructure Evolution of AZ31 Mg Alloy Sheet with Bimodal Non-Basal Texture at Room Temperature[J]. 金属学报, 2024, 60(7): 881-889.
[9] YANG Weiyang, LI Xianhao, ZHAO Pengfei, YU Haibin, ZHAO Songshan, LUO Haiwen. Changes in the Microstructures and Inhibitors of Grain-Oriented Silicon Steel Under Different Normalizing Processes[J]. 金属学报, 2024, 60(5): 605-615.
[10] GENG Ruwei, WANG Lin, WEI Zhengying, MA Ninshu. Microstructure Evolution and Epitaxial Growth Characteristics of Droplet and Arc Deposition Additive Manufacturing for Aluminum Alloy[J]. 金属学报, 2024, 60(11): 1584-1594.
[11] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[12] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[15] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
No Suggested Reading articles found!