|
|
Research Progress on Zero Thermal Expansion Metallic Materials |
SONG Yuzhu1( ), ZHANG Jimin1, ZHOU Chang2, SHI Naike1, CHEN Jun1( ) |
1 Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China 2 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
SONG Yuzhu, ZHANG Jimin, ZHOU Chang, SHI Naike, CHEN Jun. Research Progress on Zero Thermal Expansion Metallic Materials. Acta Metall Sin, 2025, 61(6): 809-825.
|
Abstract With the advancement of technology, the exploration of space, oceans, and underground resources continues to deepen. An ever-increasing demand for devices that operate under extreme conditions propels the need for the precise control of the thermal expansion properties of the materials used. Zero thermal expansion metals exhibit constant dimensions despite temperature variations, a unique feature that imparts these metals a significant application value in high-precision and high-stability devices. This article summarizes the research progress on zero thermal expansion metals since the discovery of Invar alloy over a century ago. It provides an overview of the definition, classification, and historical development of zero thermal expansion metals. Furthermore, this article introduces several main mechanisms inducing zero thermal expansion in metals and highlights several categories of metals with excellent zero thermal expansion properties and high application value. Moreover, it discusses the crystal structures, zero thermal expansion properties, and methods for controlling the thermal expansion properties of different types of metals. The coupling relationship between the magnetism, phase transitions, and thermal expansion properties is explored. Finally, the article provides a perspective on future trends in the development of zero thermal expansion metals.
|
Received: 31 July 2024
|
|
Fund: National Key Research and Development Program of China(2022YFE0109100);National Natural Science Foundation of China(22275014);National Natural Science Foundation of China(12104038);Beijing Outstanding Young Scientist Program(JWZQ20240101015) |
Corresponding Authors:
SONG Yuzhu, associate professor, Tel: (010)62332265, E-mail: yuzhusong@ustb.edu.cn; CHEN Jun, professor, Tel: (010)62332265, E-mail: junchen@ustb.edu.cn
|
1 |
Zhao C Z, Wang X, Li Z, et al. Research progress in the design, manufacturing, characterization, and evaluation of tailorable thermal expansion mechanical metamaterials [J]. Acta Mater. Compositae Sin., 2024, 41: 4589
|
|
赵淳铮, 王 昕, 李 振 等. 可调控热膨胀力学超材料设计制备与表征评测研究进展 [J]. 复合材料学报, 2024, 41: 4589
|
2 |
Chen J, Hu L, Deng J X, et al. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications [J]. Chem. Soc. Rev., 2015, 44: 3522
doi: 10.1039/c4cs00461b
pmid: 25864730
|
3 |
Mohn P. A century of zero expansion [J]. Nature, 1999, 400: 18
|
4 |
Sleight A. Zero-expansion plan [J]. Nature, 2003, 425: 674
|
5 |
Guillaume C E. Recherches sur les aciers au nickel. Dilatations aux températures élevées; résistance électrique [J]. Compt. Rend, 1897, 125: 235
|
6 |
Mary T A, Evans J S O, Vogt T, et al. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J]. Science, 1996, 272: 90
|
7 |
Song Y Z, Shi N K, Deng S Q, et al. Negative thermal expansion in magnetic materials [J]. Prog. Mater. Sci., 2021, 121: 100835
|
8 |
Wang C, Sun Y, Wang L, et al. Progress on abnormal thermal expansion materials [J]. Mater. China, 2015, 34: 497
|
|
王 聪, 孙 莹, 王 蕾 等. 反常热膨胀功能材料的研究进展 [J]. 中国材料进展, 2015, 34: 497
|
9 |
van Schilfgaarde M, Abrikosov I A, Johansson B. Origin of the Invar effect in iron-nickel alloys [J]. Nature, 1999, 400: 46
|
10 |
Zhao Y Y, Hu F X, Bao L F, et al. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure [J]. J. Am. Chem. Soc., 2015, 137: 1746
|
11 |
Shen F R, Zhou H B, Hu FX, et al. Cone-spiral magnetic ordering dominated lattice distortion and giant negative thermal expansion in Fe-doped MnNiGe compounds [J]. Mater. Horizons, 2020, 7: 804
|
12 |
Azuma M, Chen W T, Seki H, et al. Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer [J]. Nat. Commun., 2011, 2: 347
|
13 |
Long Y W, Hayashi N, Saito T, et al. Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite [J]. Nature, 2009, 458: 60
|
14 |
Yu C Y, Lin K, Zhang Q H, et al. An isotropic zero thermal expansion alloy with super-high toughness [J]. Nat. Commun., 2024, 15: 2252
doi: 10.1038/s41467-024-46613-0
pmid: 38480744
|
15 |
Yu C Y, Lin K, Jiang S H, et al. Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite [J]. Nat. Commun., 2021, 12: 4701
doi: 10.1038/s41467-021-25036-1
pmid: 34349119
|
16 |
Yu C Y, Lin K, Chen X, et al. Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction [J]. Nat. Commun., 2023, 14: 3135
doi: 10.1038/s41467-023-38929-0
pmid: 37253768
|
17 |
Guillaume C É. Recherches sur les aciers au nickel [J]. J. Phys. Theor. Appl., 1898, 7: 262
|
18 |
Song Y Z, Sun Q, Yokoyama T, et al. Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2 [J]. J. Phys. Chem. Lett., 2020, 11: 1954
|
19 |
Sun Y M, Cao Y L, Hu S X, et al. Interplanar ferromagnetism enhanced ultrawide zero thermal expansion in kagome cubic intermetallic (Zr, Nb)Fe2 [J]. J. Am. Chem. Soc., 2023, 145: 17096
|
20 |
Li W J, Lin K, Yan Y, et al. A seawater‐corrosion‐resistant and isotropic zero thermal expansion (Zr, Ta)(Fe, Co)2 alloy [J]. Adv. Mater., 2022, 34: 2109592
|
21 |
Cao Y L, Xu Y, Khmelevskyi S, et al. Interplanar magnetic orders and symmetry-tuned zero thermal expansion in kagomé metal (Zr,Ta)Fe2 [J]. Chem. Mater., 2023, 35: 9167
|
22 |
Song Y Z, Sun Q, Xu M, et al. Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect [J]. Mater. Horizons, 2020, 7: 275
|
23 |
Jing-Ting Z, Yibole H, Narsu B, et al. Structural and magnetic properties of Sc1 - x Nb x Fe2 intermetallics showing anomalous zero thermal expansion [J]. Intermetallics, 2021, 136: 107252
|
24 |
Xu M, Song Y Z, Xu Y J, et al. High-temperature zero thermal expansion in HfFe2 + δ from added ferromagnetic paths [J]. Chem. Mater., 2022, 34: 9437
|
25 |
Dong X Y, Lin K, Yu C Y, et al. Zero thermal expansion in non-stoichiometric and single-phase (Hf, Nb) Fe2.5 alloy [J]. Scr. Mater., 2023, 229: 115388
|
26 |
Lin K, Zhang W B, Yu C Y, et al. Chemical heterogeneity modulated zero thermal expansion alloy over super-wide temperature range [J]. Cell Rep. Phys. Sci., 2023, 4: 101254
|
27 |
Xu J W, Wang Z, Huang H, et al. Significant zero thermal expansion via enhanced magnetoelastic coupling in kagome magnets [J]. Adv. Mater., 2023, 35: 2208635
|
28 |
Song Y Z, Chen J, Liu X Z, et al. Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds [J]. J. Am. Chem. Soc., 2018, 140: 602
|
29 |
Hu J Y, Lin K, Cao Y L, et al. Adjustable magnetic phase transition inducing unusual zero thermal expansion in cubic RCo2-based intermetallic compounds (R = rare earth) [J]. Inorg. Chem., 2019, 58: 5401
|
30 |
Hao J Z, Shen F R, Hu F X, et al. Realization of ultra-low thermal expansion over a broad temperature interval in Gd x (Dy0.5Ho0.5)1 - x -Co2 compounds [J]. Scr. Mater., 2020, 185: 181
|
31 |
Li S P, Huang R J, Zhao Y Q, et al. Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds [J]. Adv. Funct. Mater., 2017, 27: 1604195
|
32 |
Li W, Huang R J, Wang W, et al. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe, Al)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 5556
|
33 |
Wang W, Huang R J, Li W, et al. Zero thermal expansion in NaZn13-type La(Fe,Si)13 compounds [J]. Phys. Chem. Chem. Phys., 2015, 17: 2352
doi: 10.1039/c4cp04672b
pmid: 25503989
|
34 |
Cao Y L, Lin K, Khmelevskyi S, et al. Ultrawide temperature range super-Invar behavior of R2(Fe,Co)17 materials (R = rare earth) [J]. Phys. Rev. Lett., 2021, 127: 055501
|
35 |
Dan S, Mukherjee S, Mazumdar C, et al. Zero thermal expansion with high Curie temperature in Ho2Fe16Cr alloy [J]. RSC Adv., 2016, 6: 94809
|
36 |
Qiao Y Q, Song Y Z, Xu M, et al. Controllable thermal expansion and magnetic structure in Er2(Fe, Co)14B intermetallic compounds [J]. Inorg. Chem. Front., 2019, 6: 3225
|
37 |
Shen F R, Kuang H, Hu F X, et al. Ultra-low thermal expansion realized in giant negative thermal expansion materials through self-compensation [J]. APL Mater., 2017, 5: 106102
|
38 |
Li W J, Lin K, Cao Y L, et al. Strong coupling of magnetism and lattice induces near-zero thermal expansion over broad temperature windows in ErFe10V2 - x Mo x Compounds [J]. CCS Chem., 2021, 3: 1009
|
39 |
Yu C Y, Lin K, Cao Y L, et al. Two-dimensional zero thermal expansion in low-cost Mn x Fe5 - x Si3 alloys via integrating crystallographic texture and magneto-volume effect [J]. Sci. China Mater., 2022, 65: 1912
|
40 |
Ahadi A, Matsushita Y, Sawaguchi T, et al. Origin of zero and negative thermal expansion in severely-deformed superelastic NiTi alloy [J]. Acta Mater., 2017, 124: 79
|
41 |
Li Q, Deng Z Z, Onuki Y, et al. In-plane low thermal expansion of NiTi via controlled cross rolling [J]. Acta Mater., 2021, 204: 116506
|
42 |
Wang H L, Lai D K Z, Xu J P, et al. Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb [J]. Scr. Mater., 2021, 205: 114222
|
43 |
Pang X L, Song Y Z, Shi N K, et al. Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites [J]. Composites, 2022, 238B: 109883
|
44 |
Liu J, Gong Y Y, Wang J W, et al. Realization of zero thermal expansion in La(Fe, Si)13-based system with high mechanical stability [J]. Mater. Des., 2018, 148: 71
|
45 |
Cui J, Sun Y, Shi K W, et al. Invar effect in the wide and higher temperature range by coherent coupling in Fe-based alloy [J]. Adv. Funct. Mater., 2024, 34: 2309431
|
46 |
Cen D Y, Wang B, Chu R X, et al. Design of (Hf,Ta)Fe2/Fe composite with zero thermal expansion covering room temperature [J]. Scr. Mater., 2020, 186: 331
|
47 |
Weiss R J. The origin of the ‘Invar’ effect [J]. Proc. Phys. Soc., 1963, 82: 281
|
48 |
Lohaus S H, Heine M, Guzman P, et al. A thermodynamic explanation of the Invar effect [J]. Nat. Phys., 2023, 19: 1642
|
49 |
Khmelevskyi S, Turek I, Mohn P. Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect [J]. Phys. Rev. Lett., 2003, 91: 037201
|
50 |
Matsui M, Shimizu T, Yamada H, et al. Magnetic properties and thermal expansion of Fe-Pd Invar alloys [J]. J. Magn. Magn. Mater., 1980, 15-18: 1201
|
51 |
Rode V E, Finkelberg S A, Lyalin A I, et al. Invar anomalies of Fe-Cr alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 293
|
52 |
Nishihara Y, Yamaguchi Y. Magnetic properties of the (Sc1 - x Ti x)-Fe2 system having two magnetic states with different degrees of localization [J]. J. Phys. Soc. Jpn., 1986, 55: 920
|
53 |
Li L F, Tong P, Zou Y M, et al. Good comprehensive performance of Laves phase Hf1 - x Ta x Fe2 as negative thermal expansion materials [J]. Acta Mater., 2018, 161: 258
|
54 |
Qiao Y Q, Song Y Z, Lin K, et al. Negative thermal expansion in (Hf, Ti)Fe2 induced by the ferromagnetic and antiferromagnetic phase coexistence [J]. Inorg. Chem., 2019, 58: 5380
|
55 |
Song Y Z, Chen J, Liu X Z, et al. Structure, magnetism, and tunable negative thermal expansion in (Hf,Nb)Fe2 alloys [J]. Chem. Mater., 2017, 29: 7078
|
56 |
Shiga M, Nakamura Y. Magnetovolume effects and Invar characters of (Zr1 - x Nb x)Fe2 [J]. J. Phys. Soc. Jpn., 1979, 47: 1446
|
57 |
Muraoka Y, Okuda H, Shiga M, et al. Magnetovolume effects in Gd x Y1 - x Co2 [J]. J. Phys. Soc. Jpn., 1984, 53: 331
|
58 |
Gratz E, Markosyan A S. Physical properties of RCo2 Laves phases [J]. J. Phys., 2001, 13: R385
|
59 |
von Ranke P J, de Oliveira N A. On the nature of the magnetic phase transition of the HoCo2 intermetallic [J]. J. Appl. Phys., 1998, 83: 6967
|
60 |
Morrison K, Dupas A, Mudryk Y, et al. Identifying the critical point of the weakly first-order itinerant magnet DyCo2 with complementary magnetization and calorimetric measurements [J]. Phys. Rev., 2013, 87B: 134421
|
61 |
Lizárraga R. Structural and magnetic properties of the Gd-based bulk metallic glasses GdFe2, GdCo2, and GdNi2 from first principles [J]. Phys. Rev., 2016, 94B: 174201
|
62 |
Huang R J, Liu Y Y, Fan W, et al. Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds [J]. J. Am. Chem. Soc., 2013, 135: 11469
|
63 |
Song Y Z, Huang R J, Liu Y, et al. Magnetic-field-induced strong negative thermal expansion in La(Fe, Al)13 [J]. Chem. Mater., 2020, 32: 7535
|
64 |
Shen B G, Hu F X, Dong Q Y, et al. Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe, Al)13-based compounds [J]. Chin. Phys., 2013, 22B: 017502
|
65 |
Long F X, Song Y Z, Chen J. La(Fe, Si/Al)13-based materials with exceptional magnetic functionalities: A review [J]. Microstructures, 2024, 4: 2024011
|
66 |
Cao Y L, Zhou H W, Khmelevskyi S, et al. Pressure-modulated magnetism and negative thermal expansion in the Ho2Fe17 intermetallic compound [J]. Chem. Mater., 2023, 35: 3249
|
67 |
Givord D, Lemaire R. Magnetic transition and anomalous thermal expansion in R2Fe17 compounds [J]. IEEE Trans. Magn., 1974, 10: 109
|
68 |
Cao Y L, Lin K, Liu Z N, et al. Zero thermal expansion and its mechanism of Ho2Fe11Al6 intermetallic compounds at low temperature [J]. J. Chin. Soc. Rare Earths, 2020, 38: 440
|
|
曹宜力, 林 鲲, 刘占宁 等. Ho2Fe11Al6金属间化合物的低温零热膨胀及其机制 [J]. 中国稀土学报, 2020, 38: 440
|
69 |
Buschow K H J, Grössinger R. Spontaneous volume magnetostriction in R2Fe14B compounds [J]. J. Less Common Met., 1987, 135: 39
|
70 |
Cheng B P, Yang Y C, Fu S C, et al. Thermal expansion anomalies of R2(Fe1 - x M x)14B [J]. J. Appl. Phys., 1987, 61: 3586
|
71 |
Loewenhaupt M, Prager M, Murani A P, et al. Inelastic neutron scattering on RE2Fe14B (RE = Y, Ce, Nd, Dy and Er) [J]. J. Magn. Magn. Mater., 1988, 76: 408
|
72 |
Yang S, Ma S C, Liu K, et al. Controllable negative thermal expansion by mechanical pulverizing in hexagonal Mn0.965Co1.035Ge compounds [J]. Inorg. Chem., 2018, 57: 14199
|
73 |
Ren Q Y, Hutchison W, Wang J L, et al. Negative thermal expansion of Ni-doped MnCoGe at room-temperature magnetic tuning [J]. ACS Appl. Mater. Interfaces, 2019, 11: 17531
|
74 |
Liu Y, Qiao K M, Zuo S L, et al. Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films [J]. Appl. Phys. Lett., 2018, 112: 012401
|
75 |
Liu E K, Wang W H, Feng L, et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets [J]. Nat. Commun., 2012, 3: 873
doi: 10.1038/ncomms1868
pmid: 22643900
|
76 |
Caron L, Trung N T, Brück E, et al. Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe [J]. Phys. Rev., 2011, 84B: 020414
|
77 |
Wu R R, Bao L F, Hu F X, et al. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature [J]. Sci. Rep., 2015, 5: 18027
|
78 |
Sun X M, Cong D Y, Ren Y, et al. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys [J]. Appl. Phys. Lett., 2018, 113: 041903
|
79 |
Coates C S, Goodwin A L. How to quantify isotropic negative thermal expansion: Magnitude, range, or both? [J]. Mater. Horizons, 2019, 6: 211
|
80 |
Xu J H, Liu X M, Xia Y H, et al. Magnetic properties and magnetocaloric effect of (Mn1 - x Fe x)5Sn3 (x = 0-0.5) compounds [J]. J. Appl. Phys., 2013, 113: 17A921
|
81 |
Sürgers C, Kittler W, Wolf T, et al. Anomalous Hall effect in the noncollinear antiferromagnet Mn5Si3 [J]. AIP Adv., 2016, 6: 055604
|
82 |
Kainuma R, Wang J J, Omori T, et al. Invar-type effect induced by cold-rolling deformation in shape memory alloys [J]. Appl. Phys. Lett., 2002, 80: 4348
|
83 |
Nakai M, Niinomi M, Akahori T, et al. Anomalous thermal expansion of cold-rolled Ti-Nb-Ta-Zr alloy [J]. Mater. Trans., 2009, 50: 423
|
84 |
Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
pmid: 12702870
|
85 |
Kim H Y, Wei L S, Kobayashi S, et al. Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti-23Nb-2Zr-0.7Ta-1.2O alloy [J]. Acta Mater., 2013, 61: 4874
|
86 |
Wei L S, Kim H Y, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti-Nb-Zr-Ta-O alloys [J]. Acta Mater., 2015, 100: 313
|
87 |
Monroe J A, Gehring D, Karaman I, et al. Tailored thermal expansion alloys [J]. Acta Mater., 2016, 102: 333
|
88 |
Bönisch M, Panigrahi A, Stoica M, et al. Giant thermal expansion and α-precipitation pathways in Ti-alloys [J]. Nat. Commun., 2017, 8: 1429
|
89 |
Demakov S, Semkina I, Stepanov S I. Abnormal behavior of lattice spacing of titanium orthorhombic martensite [J]. Mater. Sci. Forum, 2017, 907: 14
|
90 |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940
pmid: 36201584
|
91 |
Zhao Y Q, Huang R J, Shan Y, et al. Low-temperature abnormal thermal expansion property of Mn doped cubic NaZn13-type La(Fe, Al)13 compounds [J]. J. Phys., 2017, 897: 012005
|
92 |
Sun B H, Lu W J, Gault B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels [J]. Nat. Mater., 2021, 20: 1629
doi: 10.1038/s41563-021-01050-y
pmid: 34239084
|
93 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
|
94 |
Liu Y, Li J, Qian Y, et al. Isotropic negative thermal expansion in the multiple-phase La-Fe-Co-Si-Cu alloys with enhanced strength and ductility [J]. Acta Mater., 2024, 275: 120058
|
95 |
Kakeshita T, Takeuchi T, Fukuda T, et al. Giant magnetostriction in an ordered Fe3Pt single crystal exhibiting a martensitic transformation [J]. Appl. Phys. Lett., 2000, 77: 1502
|
96 |
Li Q, Ren Y, Zhang Q H, et al. Chemical order-disorder nanodomains in Fe3Pt bulk alloy [J]. Natl. Sci. Rev., 2022, 9: nwac053
|
97 |
Rechenberg H R, Morellon L, Algarabel P A, et al. Magnetic moment at highly frustrated sites of antiferromagnetic Laves phase structures [J]. Phys. Rev., 2005, 71B: 104412
|
98 |
Diop L V B, Isnard O, Suard E, et al. Neutron diffraction study of the itinerant-electron metamagnetic Hf0.825Ta0.175Fe2 compound [J]. Solid State Commun., 2016, 229: 16
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|