|
|
Recent Development of Triple Melt GH4169 Alloy |
DU Jinhui1,2( ), BI Zhongnan1,2, QU Jinglong2 |
1Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China 2Gaona Aero Material Co., Ltd, Beijing 100081, China |
|
Cite this article:
DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy. Acta Metall Sin, 2023, 59(9): 1159-1172.
|
Abstract The breakthrough application of triple melt technology (vacuum induction melting (VIM) + electroslag remelting (ESR) + vacuum arc remelting (VAR)) for fabricating GH4169 alloy facilitated the optimization of the entire production process of GH4169 disks. This paper summarizes the research progress on the chemical composition, triple melting, homogenization treatment, cogging, disk forging, residual stress control, and quality control system of GH4169 alloy. The breakthrough and large-scale application of triple melting technology have resulted in improved purity of the GH4169 alloy and reduced occurrence probability of metallurgical defects. In addition, the microstructural uniformity and yield of forging bars have been improved by the combination of fast (upsetting and drawing) and radial forging. Furthermore, deformations occurring during the machining and operation of GH4169 disks have been reduced using residual stress control technology. Results related to ultrahigh strength, ultralarge scale, high corrosion resistance, and hydrogen embrittlement characteristics of GH4169 alloy are discussed, and potential future research directions are outlined here.
|
Received: 31 March 2023
|
|
Fund: National Key Research and Development Program of China(2022YFF0609300);National Key Research and Development Program of China(2017YFA0700703);National Science and Technology Major Project of China(2019-VI-0021-0137) |
1 |
Eiselstein H L, Tillack D J. The invention and definition of alloy 625 [R]. Warrendale: The Minerals, Metals & Materials Society, 1991
|
2 |
Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J]. J. Aeronaut. Mater., 2016, 36(3): 27
|
|
杜金辉, 赵光普, 邓 群 等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27
|
3 |
Du J H, Lv X D, Deng Q, et al. Progress in GH4169 alloy development [J]. Mater. China, 2012, 31(12): 12
|
|
杜金辉, 吕旭东, 邓 群 等. GH4169合金研制进展 [J]. 中国材料进展, 2012, 31(12): 12
|
4 |
Simcock J H. Induction melting [P]. USA Pat, 05012487, 1991
|
5 |
Li Z B. New advances in vacuum metallurgy [J]. Vac. Sci. Technol., 1999, 19: 175
doi: 10.1116/1.1322652
|
|
李正邦. 真空冶金新进展 [J]. 真空科学与技术, 1999, 19: 175
|
6 |
Heaslip L J, McLean A, Sommerville I D. Chemical and Physical Interactions During Transfer Operations [M]. Warrendale: Iron and Steel Society, 1983: 35
|
7 |
Morales R D, Díaz-Cruz M, Palfox-Ramos J, et al. Modelling steel flow in a three-strand billet tundish using a turbulence inhibitor [J]. Steel Res., 2001, 72: 11
doi: 10.1002/(ISSN)1869-344Xa
|
8 |
Zhang L, Huang Y W, Yang S B, et al. Water modeling of turbulence inhibitor in tundish [J]. Iron Steel, 2002, 37(12): 17
|
|
张 立, 黄耀文, 杨时标 等. 连铸中间包湍流控制器水模实验研究 [J]. 钢铁, 2002, 37(12): 17
|
9 |
Yuan J B, Yu X B, Chang E, et al. Phyical modeling of melt in three strand tundish of continuous casting [J]. Steelmaking, 2003, 19(1): 42
|
|
袁己百, 于学斌, 常 锷 等. 三流连铸中间包的物理模拟 [J]. 炼钢, 2003, 19(1): 42
|
10 |
Wang F, Li B K. Analysis of electromagnetic field and Joule heating of electroslag remelting processes [J]. Acta Metall. Sin., 2010, 46: 794
doi: 10.3724/SP.J.1037.2010.00080
|
|
王 芳, 李宝宽. 电渣重熔过程中的电磁场和Joule热分析 [J]. 金属学报, 2010, 46: 794
|
11 |
Wang Q, He Z, Li B K, et al. A general coupled mathematical model of electromagnetic phenomena, two-phase flow, and heat transfer in electroslag remelting process including conducting in the mold [J]. Metall. Mater. Trans., 2014, 45B: 2425
|
12 |
Mills K C, Fox A B. The role of mould fluxes in continuous casting——So simple yet so complex [J]. ISIJ Int., 2003, 43: 1479
doi: 10.2355/isijinternational.43.1479
|
13 |
Sun C Y, Guo X M. Electrical conductivity of MO (MO = FeO, NiO)-containing CaO-MgO-SiO2-Al2O3 slag with low basicity [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1648
doi: 10.1016/S1003-6326(11)60909-6
|
14 |
Woodside C R, King P E, Nordlund C. Arc distribution during the vacuum arc remelting of Ti-6Al-4V [J]. Metall. Mater. Trans., 2013, 44B: 154
|
15 |
Spitans S, Franz H, Scholz H, et al. Numerical simulation of the ingot growth during the vacuum arc remelting process [J]. Magnetohydrodynamics, 2017, 53: 557
doi: 10.22364/mhd
|
16 |
Nastac L, Sundarraj S, Yu K O, et al. The stochastic modeling of solidification structures in alloy 718 remelt ingots [J]. JOM, 1998, 50: 30
|
17 |
Chen Z Y, Yang S F, Qu J L, et al. Effects of different melting technologies on the purity of superalloy GH4738 [J]. Materials, 2018, 11: 1838
doi: 10.3390/ma11101838
|
18 |
Liu H, Deng C, Zhang N, et al. Effect of melting process on Cu content in TC10 ingot [J]. Spec. Steel Technol., 2013, 19(2): 35
|
|
刘 华, 邓 超, 张 娜 等. 熔炼工艺对TC10铸锭中Cu含量的影响 [J]. 特钢技术, 2013, 19(2): 35
|
19 |
Descotes V, Bellot J-P, Perrin-Guérin V, et al. Titanium nitride (TiN) precipitation in a maraging steel during the vacuum arc remelting (VAR) process——Inclusions characterization and modeling [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 143: 012013
|
20 |
Shevchenko D M, Ward R M. Liquid metal pool behavior during the vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2009, 40B: 263
|
21 |
Zhang Y, Li P H, Jia C L, et al. Research progress of melting purification techniques and equipment for cast & wrought superalloy [J]. Mater. Rep., 2018, 32: 1496
|
|
张 勇, 李佩桓, 贾崇林 等. 变形高温合金纯净熔炼设备及工艺研究进展 [J]. 材料导报, 2018, 32: 1496
|
22 |
Wang X H, Ward R M, Jacobs M H, et al. Effect of variation in process parameters on the formation of freckle in Inconel 718 by vacuum arc remelting [J]. Metall. Mater. Trans., 2008, 39A: 2981
|
23 |
Auburtin P, Wang T, Cockcroft S L, et al. Freckle formation and freckle criterion in superalloy castings [J]. Metall. Mater. Trans., 2000, 31B: 801
|
24 |
Jackman L A, Maurer G E, Widge S. White spots in superalloys [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warr-endale: TMS, 1994
|
25 |
Takachio K, Nonomura T. Improvement in the quality of superalloy VAR ingots [J]. ISIJ Int., 1996, 36: S85
doi: 10.2355/isijinternational.36.Suppl_S85
|
26 |
Grignard J F, Soller A, Jourdan J, et al. On the formation of white-spot defects in a superalloy VAR ingot [J]. Adv. Eng. Mater., 2011, 13: 563
doi: 10.1002/adem.v13.7
|
27 |
Wang X, Barratt M D, Ward R M, et al. The effect of VAR process parameters on white spot formation in Inconel 718 [J]. J. Mater. Sci., 2004, 39: 7169
doi: 10.1023/B:JMSC.0000048728.85832.44
|
28 |
Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of Inconel 718 [J]. Metall. Mater. Trans., 2002, 33A: 443
|
29 |
Cui J J, Li B K, Liu Z Q, et al. Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots [J]. Metals, 2021, 11: 2046
doi: 10.3390/met11122046
|
30 |
Li F L, Fu R, Feng D, et al. Microstructure and segregation behavior of Rene88DT alloy prepared by ESR-CDS [J]. Rare Met. Mater. Eng., 2016, 45: 1437
doi: 10.1016/S1875-5372(16)30127-8
|
31 |
Wang R T. Numerical simulation of inclusion movement and electrode oxidation in electroslag remelting process [D]. Wuhan: Wuhan University of Science and Technology, 2018
|
|
汪瑞婷. 电渣重熔过程中夹杂物运动行为以及电极氧化的数值模拟 [D]. 武汉: 武汉科技大学, 2018
|
32 |
O'Hara E M, Harrison N M, Polomski B K, et al. The effect of inclusions on the high-temperature low-cycle fatigue performance of cast MarBN: Experimental characterisation and computational modelling [J]. Fatigue Fract. Eng. Mater. Struct., 2018, 41: 2288
doi: 10.1111/ffe.v41.11
|
33 |
Hu Y, Chen W Q, Wan C J, et al. Effect of deoxidation process on inclusion and fatigue performance of spring steel for automobile suspension [J]. Metall. Mater. Trans., 2018, 49B: 569
|
34 |
Ardi D T, Guowei L, Maharjan N, et al. Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718 [J]. Addit. Manuf., 2020, 36: 101442
|
35 |
Sohrabi M J, Mirzadeh H, Rafiei M. Solidification behavior and Laves phase dissolution during homogenization heat treatment of Inconel 718 superalloy [J]. Vacuum, 2018, 154: 235
doi: 10.1016/j.vacuum.2018.05.019
|
36 |
Miao Z J, Shan A D, Wu Y B, et al. Quantitative analysis of homogenization treatment of Inconel 718 superalloy [J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 1009
doi: 10.1016/S1003-6326(11)60814-5
|
37 |
Miao Z J, Shan A D, Lu J, et al. Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy [J]. Mater. Sci. Technol., 2011, 27: 1551
doi: 10.1179/026708310X12815992418139
|
38 |
Jiang S C, Zhang J, Han F. As-cast microstructure characteristics and homogenization treatment of GH4169 alloy [J]. Heat Treat. Met., 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
|
|
蒋世川, 张 健, 韩 福. GH4169合金铸态组织特征及均匀化处理工艺 [J]. 金属热处理, 2021, 46(2): 109
doi: 10.13251/j.issn.0254-6051.2021.02.019
|
39 |
Thomas A, El-Wahabi M, Cabrera J M, et al. High temperature deformation of Inconel 718 [J]. J. Mater. Process. Technol., 2006, 177: 469
doi: 10.1016/j.jmatprotec.2006.04.072
|
40 |
Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
|
|
刘永长, 郭倩颖, 李 冲 等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259
doi: 10.11900/0412.1961.2016.00290
|
41 |
Zhang H J, Li C, Guo Q Y, et al. Delta precipitation in wrought Inconel 718 alloy; The role of dynamic recrystallization [J]. Mater. Charact., 2017, 133: 138
doi: 10.1016/j.matchar.2017.09.032
|
42 |
Liu Y C, Zhang H J, Guo Q Y, et al. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
|
刘永长, 张宏军, 郭倩颖 等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653
doi: 10.11900/0412.1961.2018.00340
|
43 |
Páramo-Kañetas P J, Ozturk U, Calvo J, et al. Analysis of strain-induced precipitates by delta-processing in Inconel 718 superalloy [J]. Mater. Charact., 2021, 173: 110926
doi: 10.1016/j.matchar.2021.110926
|
44 |
Oberwinkler B, Fischersworring-Bunk A, Hüller M, et al. Integrated process modeling for the mechanical properties optimization of direct aged alloy 718 engine disks [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 513
|
45 |
Aoki C, Ueno T, Ohno T. Influence of hot working conditions on grain growth behavior of alloy 718 [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 609
|
46 |
Qin H L, Zhang R Y, Bi Z N, et al. Study on the evolution of residual stress during ageing treatment in a GH4169 alloy disk [J]. Acta Metall. Sin., 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
|
秦海龙, 张瑞尧, 毕中南 等. GH4169合金圆盘时效过程残余应力的演化规律研究 [J]. 金属学报, 2019, 55: 997
doi: 10.11900/0412.1961.2018.00428
|
47 |
Bi Z N, Qin H L, Dong Z G, et al. Residual stress evolution and its mechanism during the manufacture of superalloy disk forgings [J]. Acta Metall. Sin., 2019, 55: 1160
|
|
毕中南, 秦海龙, 董志国 等. 高温合金盘锻件制备过程残余应力的演化规律及机制 [J]. 金属学报, 2019, 55: 1160
|
48 |
Qin H L, Bi Z N, Li D F, et al. Study of precipitation-assisted stress relaxation and creep behavior during the ageing of a nickel-iron superalloy [J]. Mater. Sci. Eng., 2019, A742: 493
|
49 |
Qin H L, Bi Z N, Yu H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy [J]. Mater. Sci. Eng., 2018, A728: 183
|
50 |
Qin H L, Bi Z N, Yu H Y, et al. Influence of stress on γ″ precipitation behavior in Inconel 718 during aging [J]. J. Alloys Compd., 2018, 740: 997
doi: 10.1016/j.jallcom.2018.01.030
|
51 |
Blaes N, Donth B, Diwo A, et al. Manufacture of large Ni-base ingots and forgings [A]. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys [C]. Seven Springs: The Minerals, Metals & Materials Society, 2016: 601
|
52 |
Zhu J J, Yuan W H. Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy [J]. J. Alloys Compd., 2023: 168707
|
53 |
Yadav P C, Shekhar S, Jayabalan B, et al. Controlled precipitation and recrystallization to achieve superior mechanical properties of severely deformed Inconel 718 alloy [J]. Mater. Chem. Phys., 2023, 295: 127098
doi: 10.1016/j.matchemphys.2022.127098
|
54 |
Yang X, Chen S N, Wang B X, et al. Superplastic deformation behavior of cold-rolled Inconel 718 alloy at high strain rates [J]. J. Mater. Process. Technol., 2022, 308: 117696
doi: 10.1016/j.jmatprotec.2022.117696
|
55 |
Ran R, Wang Y, Zhang Y X, et al. Two-stage annealing treatment to uniformly refine the microstructure, tailor δ precipitates and improve tensile properties of Inconel 718 alloy [J]. J. Alloys Compd., 2022, 927: 166820
doi: 10.1016/j.jallcom.2022.166820
|
56 |
Galliano F, Andrieu E, Cloué J M, et al. Effect of temperature on hydrogen embrittlement susceptibility of alloy 718 in light water reactor environment [J]. Int. J. Hydrogen Energy, 2017, 42: 21371
doi: 10.1016/j.ijhydene.2017.06.211
|
57 |
Tang R, Liu H D, Wang D Z, et al. Developing progress of oilfield-grade corrosion resistant alloy 718 [J]. Heat Treat. Met., 2018, 43(7): 54
|
|
唐 瑞, 刘海定, 王东哲 等. 油气工程用镍基耐蚀合金718的研究进展 [J]. 金属热处理, 2018, 43(7): 54
|
58 |
Li G Y, Liu Z Q, Wang B. Study on the infiltration mechanism of tellurium into the Inconel 718 [J]. J. Mater. Sci., 2023, 58: 1966
doi: 10.1007/s10853-023-08150-x
|
59 |
Zhang Z B, Moore K L, McMahon G, et al. On the role of precipitates in hydrogen trapping and hydrogen embrittlement of a nickel-based superalloy [J]. Corros. Sci., 2019, 146: 58
doi: 10.1016/j.corsci.2018.10.019
|
60 |
Tarzimoghadam Z, Ponge D, Klöwer J, et al. Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation [J]. Acta Mater., 2017, 128: 365
doi: 10.1016/j.actamat.2017.02.059
|
61 |
Zhang Z B, Obasi G, Morana R, et al. Hydrogen assisted crack initiation and propagation in a nickel-based superalloy [J]. Acta Mater., 2016, 113: 272
doi: 10.1016/j.actamat.2016.05.003
|
62 |
Tarzimoghadam Z, Rohwerder M, Merzlikin S V, et al. Multi-scale and spatially resolved hydrogen mapping in a Ni-Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718 [J]. Acta Mater., 2016, 109: 69
doi: 10.1016/j.actamat.2016.02.053
|
63 |
Stenerud G, Wenner S, Olsen J S, et al. Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718 [J]. Int. J. Hydrogen Energy, 2018, 43: 6765
doi: 10.1016/j.ijhydene.2018.02.088
|
64 |
Bechtle S, Kumar M, Somerday B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J]. Acta Mater., 2009, 57: 4148
doi: 10.1016/j.actamat.2009.05.012
|
65 |
Seita M, Hanson J P, Gradečak S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement [J]. Nat. Commun., 2015, 6: 6164
doi: 10.1038/ncomms7164
pmid: 25652438
|
66 |
Hanson J P, Bagri A, Lind J, et al. Crystallographic character of grain boundaries resistant to hydrogen-assisted fracture in Ni-base alloy 725 [J]. Nat. Commun., 2018, 9: 3386
doi: 10.1038/s41467-018-05549-y
pmid: 30140001
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|