Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (2): 253-264    DOI: 10.11900/0412.1961.2022.00533
Research paper Current Issue | Archive | Adv Search |
Effect of Powder Particle Size on Forming Titanium Alloy Shrouded Impeller
SHANG Xuewen1,2, CUI Xiaoxiao2, XU Lei2, LU Zhengguan2()
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

SHANG Xuewen, CUI Xiaoxiao, XU Lei, LU Zhengguan. Effect of Powder Particle Size on Forming Titanium Alloy Shrouded Impeller. Acta Metall Sin, 2025, 61(2): 253-264.

Download:  HTML  PDF(2949KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A shrouded impeller is an essential component of a liquid rocket, mainly responsible for transporting and pressurizing liquid fuel or oxidant. Owing to the low temperature and high-rotation speed of the working environment, materials with high performance are required for fabricating the impeller. With its excellent low temperature mechanical properties and high specific strength, Ti-5Al-2.5Sn extra-low interstitial (ELI) alloy has been widely applied in fabricating liquid rocket components, including the shrouded impeller. Considering the geometric complexity of the impeller, the powder metallurgy-hot isostatic pressing (PM-HIP) route is a suitable method for impeller formation. PM-HIP technology has a similar forming capability as precision casting but avoids casting defects, realizing the parts with reliable service performance. However, the mechanical properties and dimensional accuracy of the impeller may be influenced by the variation of powder particle sizes. Herein, three kinds of Ti-5Al-2.5Sn ELI prealloyed powders with different particle size distributions (average particle size D50 = 125, 94, and 73 μm) were prepared by adjusting the process parameters of gas atomization and screen meshes. Then, their corresponding shrouded impellers were manufactured via the PM-HIP route at 940 oC, 120 MPa for 3 h. Subsequently, the impellers were annealed at 815 oC for 1.5 h, followed by air cooling. The effect of powder particle sizes on the mechanical properties of shrouded impellers was analyzed using cryogenic-temperature tensile tests. The porosity defect of impeller slices was detected using industrial computed tomography. The microstructure of the impellers was characterized using SEM and TEM. Meanwhile, the mechanism of low temperature deformation was also discussed. All three impellers exhibited homogeneous microstructure with fine grains, and their mechanical properties were comparable to the level of wrought alloys; specifically, the tensile strength was about 1300 MPa, and the elongation was 20% at 77 K. In addition, many twins were found in the deformation zones, including the types of {101¯2}, {101¯1}, and {112¯2}. PM-HIP impeller size was calculated using the finite element method in the modified Gurson model and compared with the size of the actual impeller. Dimensional shrinkage was consistent between the finite element simulation result and the actual part, and the deviation in the flow channel was < 0.3 mm.

Key words:  shrouded impeller      powder particle size      Ti-5Al-2.5Sn ELI      hot isostatic pressing      finite element method     
Received:  21 October 2022     
ZTFLH:  TG146.23  
Fund: National Science and Technology Major Project of China(J2019-VII-0005-0145);Strategic Priority Research Program of Chinese Academy of Sciences(XDA22010102)
Corresponding Authors:  LU Zhengguan, Tel: (024)83978843, E-mail: zglu@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00533     OR     https://www.ams.org.cn/EN/Y2025/V61/I2/253

Fig.1  Particle size distributions of three pre-alloyed powders (D50—the particle diameter at 50% in the cumulative distribution)
(a) powder 1# (b) powder 2# (c) powder 3#
Powder No.AlSnFeCSiHNOTi
1#5.022.580.0090.00970.0080.00340.00430.10Bal.
2#5.012.570.0090.00990.0080.00380.00440.10Bal.
3#5.022.530.0090.00770.0090.00170.00510.11Bal.
Table 1  Chemical compositions and impurity contents of three pre-alloyed powders
Fig.2  Assembly relationship of shrouded impeller toolings
(a) section view of drawings (b) tooling picture
Fig.3  Schematics of near-net-shape forming process of shrouded impeller (a-d) and sampling positions for mechanical property tests (e)
Forming methodTemperatureσUTS / MPaσYS / MPaEL / %
PM-HIPRT885083617.5
(powder 1#)886083418.5
77 K1290118019.5
1277118820.0
20 K1553146118.5
1559143020.0
1278121515.5
Wrought[16]RT848-18.0
77 K1290-13.5
20 K1587-15.0
Cast[17]RT741068513.0
74406907.0
20 K1288-10.0
1294-7.5
Table 2  Comparisons of mechanical properties of Ti-5Al-2.5Sn extra-low interstitial (ELI) alloys with different forming methods[16,17]
Fig.4  Pores determinations of shrouded impellers formed by 1# (a1-c1), 2# (a2-c2), and 3# (a3-c3) powders, respectively
(a1-a3) X-ray inspection (b1-b3) CT detection (c1-c3) SEM images
Sample No.Oxygen contentIncrease of oxygen
1#0.110.01
2#0.110.01
3#0.130.02
Table 3  Oxygen contents sampled from three impellers
Fig.5  Tensile properties of impellers at 77 K (RA—reduction of area)
(a) different positions of the same impeller (2#) (b) comprehensive comparison of different impellers
Fig.6  Low (a) and high (b) magnified fracture SEM images of sampling from shrouded impeller at 77 K
Fig.7  Mechanical property distributions (a) and stress-strain curves (b) of the Ti-5Al-2.5Sn ELI alloy at different temperatures
Fig.8  Bright-field TEM image of Ti-5Al-2.5Sn ELI alloy (a) and electron diffraction pattern (b) at 77 K
Fig.9  Twin distributions in cryogenic deformed microstructures of Ti-5Al-2.5Sn ELI alloy at 77 K (a) and 20 K (b)
Fig.10  Finite element method (FEM) simulation of impeller sizes before (a) and after (b) shrinkage
Fig.11  Overall (a) and local (b) observations of shrouded impeller relative position relationships between simulation and actual measurement
Type0102030405
Powder 1#89.9265.6965.738.415.14
Powder 2#88.4265.1765.178.575.17
Powder 3#85.9064.7864.968.695.10
FEM86.5865.1864.618.405.00
Maximum deviation3.34 (3.71%)0.51 (0.78%)1.12 (1.70%)0.29 (3.34%)0.17 (3.33%)
Minimum deviation0.68 (0.80%)0.01 (0.02%)0.35 (0.54%)0.01 (0.12%)0.10 (1.96%)
Table 4  Comparisons of the measured and simulated dimensions of shrouded impellers at some positions in Fig.11a
1 Volkov A M, Karyagin D A, Letnikov M N, et al. Specifics of producing disk blanks for gas-turbine engines using granules of super heat-resistant nickel alloys [J]. Metallurgist, 2020, 64: 362
2 Hashiguchi D H, Heberling J, Campbell J, et al. New decade of shaped beryllium blanks [A]. Proceedings of SPIE 9574, Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems [C]. San Diego: SPIE, 2015: 957403
3 Sergi A, Khan R H U, Irukuvarghula S, et al. Development of Ni-base metal matrix composites by powder metallurgy hot isostatic pressing for space applications [J]. Adv. Powder Technol., 2022, 33:103411
4 Qian Z D, Wang H. Russian pд hydrogen-oxygen engine technology [R]. Technical Report on Aerospace, 1995: 12
钱宗德, 王 桁. 俄罗斯pд—0120氢氧发动机技术 [R]. 航天技术报告, 1995: 12
5 Guichard D, Laithier F, Fournier J P. Development of powder metallurgy impellers for VINCI hydrogen turbopump [A]. Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C]. Las Vegas: AIAA. 2000. doi:10.2514/6.2000-3861
6 Alliot P, Marchal N, Goirand B. The VINCI hydrogen turbopump development status [A]. Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit [C]. Indianapolis: AIAA, 2013. doi:10.2514/6.2002-4007
7 Bouley S A, Grabowski Jr R C, Rachuk V S, et al. Unified low-risk single-shaft turbopump for cryogenic expander-cycle rocket engines [A]. Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit [C]. Nashville: AIAA, 2010. doi:10.2514/6.2010-7130
8 Xu L, Guo R P, Wu J, et al. Progress in hot isostatic pressing technology of titanium alloy powder [J]. Acta Metall. Sin., 2018, 54: 1537
徐 磊, 郭瑞鹏, 吴 杰 等. 钛合金粉末热等静压近净成形研究进展 [J]. 金属学报, 2018, 54: 1537
9 Yin Y J, Zhang P, Zhou J X, et al. Correction on Shima yield criterion for Ti6Al4V powder HIP process [J]. J. Huazhong Univ. Sci. Technol. (Nat. Sc. Ed.), 2018, 46(6): 14
殷亚军, 张 朋, 周建新 等. Ti6Al4V合金粉末热等静压Shima屈服准则修正 [J]. 华中科技大学学报(自然科学版), 2018, 46(6): 14
10 Lang L H, Bu G L, Xue Y, et al. Determine key parameters of simulation constitutive and process optimization for titanium alloy (Ti-6Al-4V) hot isostatic pressing [J]. J. Plast. Eng., 2011, 18(4): 34
郎利辉, 布国亮, 薛 勇 等. 钛合金热等静压模拟本构关键参数确定及工艺优化 [J]. 塑性工程学报, 2011, 18(4): 34
11 Samarov V, Seliverstov D, Froes F H. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing [A]. Titanium Powder Metallurgy: Science, Technology and Applications [C]. Boston: Butterworth-Heinemann, 2015: 313
12 Goirand B, Gallardo J F, Bosson R. Vinci hydrogen turbopump: A new step in safe, faster and cheaper developments [A]. Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit [C]. Las Vegas: AIAA. 2000, doi:10.2514/6.2000-3156
13 Yoon S H, Choi C H, Kim J. HIP activities for turbopump components of Korea space launch vehicle [A]. Proceedings of the 12th International Conference on Hot Isostatic Pressing (HIP '17) [C]. Millersville: Materials Research Forum LLC, 2019: 79
14 Guo R P, Xu L, Cheng W X, et al. Effect of hot isostatic pressing parameters on microstructure and mechanical properties of powder metallurgy Ti-5Al-2.5Sn ELI alloy [J]. Acta Metall. Sin., 2016, 52: 842
郭瑞鹏, 徐 磊, 程文祥 等. 热等静压参数对Ti-5Al-2.5Sn ELI粉末合金组织与力学性能的影响 [J]. 金属学报, 2016, 52: 842
doi: 10.11900/0412.1961.2016.00018
15 Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin Heidelberg: Springer, 2007: 1
16 Lu Z C, Zhang X H, Ji W, et al. Investigation on the deformation mechanism of Ti-5Al-2.5Sn ELI titanium alloy at cryogenic and room temperatures [J]. Mater. Sci. Eng., 2021, A818: 141380
17 Billinghurst Jr E E. Tensile properties of cast titanium alloys: Titanium-6Al-4V ELI and titanium-5Al-2.5Sn ELI [R]. Huntsville: National Aeronautics and Space Administration, 1992
18 Lu Z G. Preparation and hot deformation of Ti2AlNb alloy prepared by powder metallurgy [D]. Hefei: University of Science and Technology of China, 2019
卢正冠. 粉末冶金Ti2AlNb合金的制备及热变形研究 [D]. 合肥: 中国科学技术大学, 2019
19 Wu J, Xu L, Lu Z G, et al. Preparation and electron beam welding of HIP powder metallurgy Ti-22Al-24Nb-0.5 Mo alloys [J]. Rare Met. Mater. Eng., 2017, 46(S1): 241
吴 杰, 徐 磊, 卢正冠 等. 热等静压粉末Ti2AlNb合金的制备及电子束焊 [J]. 稀有金属材料与工程, 2017, 46(S1): 241
20 Chen W X, Xu L, Lei J F, et al. Effects of powder size segregation on tensile properties of Ti-5Al-2.5Sn ELI alloy powder [J]. Chin. J. Nonferrous Met., 2013, 23: 362
程文祥, 徐 磊, 雷家峰 等. 粉末粒度偏析对Ti-5Al-2.5Sn ELI粉末合金拉伸性能的影响 [J]. 中国有色金属学报, 2013, 23: 362
21 Liu Q M, Wu J, Chen Y L, et al. Effect of temperature and powder particle size on mechanical properties and microstructure of PM Ti2AlNb alloy prepared via hot isostatic pressing [J]. Chin. J. Mater. Res., 2019, 33: 161
刘巧沐, 吴 杰, 陈玉龙 等. 热等静压温度和粉末粒度对Ti2AlNb合金组织与性能的影响 [J]. 材料研究学报, 2019, 33: 161
doi: 10.11901/1005.3093.2018.509
22 Lu Z G, Wu J, Xu L, et al. Powder size influence on tensile properties and porosity for PM Ti2AlNb alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 1329
23 Christian J L, Hurlich A. Mechanical properties of titanium alloys at cryogenic temperatures [A]. Proceedings of 1967 Cryogenic Engineering Conference Stanford University Stanford [C]. California: Springer, 1995. doi:10.1007/978-1-4757-0516-4_35
24 Grinder O. Surface oxidation of steel powder [J]. Steel Res. Int., 2010, 81: 908
25 Xu L, Tian X S, Wu J, et al. Microstructure and mechanical properties of inconel 718 powder alloy prepared by hot isostatic pressing [J]. Acta Metall. Sin., 2023, 59: 693
doi: 10.11900/0412.1961.2021.00586
徐 磊, 田晓生, 吴 杰 等. 热等静压成形Inconel 718粉末合金的显微组织和力学性能 [J]. 金属学报, 2023, 59: 693
26 Nayan N, Singh G, Antony Prabhu T, et al. Cryogenic mechanical properties of warm multi-pass caliber-rolled fine-grained titanium alloys: Ti-6Al-4V (normal and ELI grades) and VT14 [J]. Metall. Mater. Trans., 2018, 49A: 128
27 Arul Kumar M, Wroński M, McCabe R J, et al. Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study [J]. Acta Mater., 2018, 148: 123
28 Huang C W, Ge P, Zhao Y Q, et al. Research progress in titanium alloys at cryogenic temperatures [J]. Rare Met. Mater. Eng., 2016, 45: 254
黄朝文, 葛 鹏, 赵永庆 等. 低温钛合金的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 254
29 Grässel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
30 Yuan W X, Mei J, Samarov V, et al. Computer modelling and tooling design for near net shaped components using hot isostatic pressing [J]. J. Mater. Process. Technol., 2007, 182: 39
31 Abouaf M, Chenot J L, Raisson G, et al. Finite element simulation of hot isostatic pressing of metal powders [J]. Int. J. Numer. Methods Eng., 1988, 25: 191
32 Van Nguyen C, Bezold A, Broeckmann C. Inclusion of initial powder distribution in FEM modelling of near net shape PM hot isostatic pressed components [J]. Powder Metall., 2014, 57: 295
33 Abdelhafeez A M, Essa K E A. Influences of powder compaction constitutive models on the finite element simulation of hot isostatic pressing [J]. Procedia CIRP, 2016, 55: 188
34 Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth, and interaction [D]. Providence: Brown University, 1975
35 Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media [J]. J. Eng. Mater. Technol., 1977, 99: 2
36 Tvergaard V. On localization in ductile materials containing spherical voids [J]. Int. J. Fract., 1982, 18: 237
37 Aravas N. On the numerical integration of a class of pressure-dependent plasticity models [J]. Int. J. Numer. Methods Eng., 1987, 24: 1395
38 Wu J. Preparation and mechanical properties optimization of powder metallurgy Ti-22Al-24Nb-0.5Mo Alloys [D]. Beijing: University of Chinese Academy of Sciences, 2016
吴 杰. 粉末冶金Ti-22Al-24Nb-0.5Mo合金的制备和性能调控 [D]. 北京: 中国科学院大学, 2016
39 Arzt E, Ashby M F, Easterling K E. Practical applications of hotisostatic pressing diagrams: Four case studies [J]. Metall. Mater. Trans., 1983, 14A: 211
40 Broeckmann C. Hot isostatic pressing of near net shape components-process fundamentals and future challenges [J]. Powder Metall., 2012, 55: 176
41 Svoboda A, Häggblad H Å, Karlsson L. Simulation of hot isostatic pressing of a powder metal component with an internal core [J]. Comput. Methods Appl. Mech. Eng., 1997, 148: 299
42 Xu L, Guo R P, Chen Z Y, et al. Mechanical property of powder compact and forming of large thin-wall cylindrical structure of Ti55 alloys [J]. Chin. J. Mater. Res., 2016, 30: 23
doi: 10.11901/1005.3093.2015.284
徐 磊, 郭瑞鹏, 陈志勇 等. Ti55粉末合金的拉伸性能和薄壁筒体结构的成型 [J]. 材料研究学报, 2016, 30: 23
43 Olevsky E, Maximenko A, Van Dyck S, et al. Container influence on shrinkage under hot isostatic pressing—I. Shrinkage anisotropy of a cylindrical specimen [J]. Int. J. Solids Struct., 1998, 35: 2283
[1] GU Liming, FENG Xiaoming, YU Zhao, ZHANG Junfan, LIU Zhenyu, HE Lunhua, LU Huaile, LI Xiaohu, WANG Chen, ZHANG Xiaodong, XIAO Bolv, MA Zongyi. Impact of Cryogenic Cycling on the Macro and Microscopic Residual Stress in SiC/Al Composites[J]. 金属学报, 2024, 60(8): 1031-1042.
[2] TIAN Xiaosheng, LU Zhengguan, XU Lei, WU Jie, YANG Rui. Hot Isostatic Densification of Inconel 718 Powder Alloy and Elimination of Prior Particle Boundaries[J]. 金属学报, 2024, 60(11): 1487-1498.
[3] XU Lei, TIAN Xiaosheng, WU Jie, LU Zhengguan, YANG Rui. Microstructure and Mechanical Properties of Inconel 718 Powder Alloy Prepared by Hot Isostatic Pressing[J]. 金属学报, 2023, 59(5): 693-702.
[4] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[5] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
[6] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[7] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[8] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[9] Lei XU, Ruipeng GUO, Jie WU, Zhengguan LU, Rui YANG. Progress in Hot Isostatic Pressing Technology ofTitanium Alloy Powder[J]. 金属学报, 2018, 54(11): 1537-1552.
[10] Jie WU,Lei XU,Zhengguan LU,Yuyou CUI,Rui YANG. PREPARATION OF POWDER METALLURGY Ti-22Al-24Nb-0.5Mo ALLOYS ANDELECTRON BEAM WELDING[J]. 金属学报, 2016, 52(9): 1070-1078.
[11] Ruipeng GUO,Lei XU,Wenxiang CHENG,Jiafeng LEI,Rui YANG. EFFECT OF HOT ISOSTATIC PRESSING PARAMETERSON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF POWDER METALLURGY Ti-5Al-2.5Sn ELI ALLOY[J]. 金属学报, 2016, 52(7): 842-850.
[12] Yongkui LI, Chunyi QUAN, Shanping LU, Qingyang JIAO, Shijian LI, Zhonghai SUN. STUDY ON SHAPE CORRECTION OF THE THIN PLATE OF TA15 TITANIUM ALLOY BY POST WELD HEAT TREATMENT[J]. 金属学报, 2016, 52(3): 281-288.
[13] ZHU Ruidong, DONG Wenchao, LIN Huaqiang, LU Shanping, LI Dianzhong. FINITE ELEMENT SIMULATION OF WELDING RESIDUAL STRESS FOR BUFFER BEAM OF CRH2A HIGH SPEED TRAIN[J]. 金属学报, 2014, 50(8): 944-954.
[14] LI Yongkui, CHEN Jundan, LU Shanping. RESIDUAL STRESS IN THE WHEEL OF 42CrMo STEEL DURING QUENCHING[J]. 金属学报, 2014, 50(1): 121-128.
[15] YAO Yao, YE Jianshui, DONG Jianxin, YAO Zhihao, ZHANG Maicang,GUO Weimin. ELEMENTS DIFFUSION LAW OF DD407/FGH95 DIFFU-SION BONDING UNDER HOT ISOSTATIC PRESSING: I. Building Diffusion Bonding Model[J]. 金属学报, 2013, 49(9): 1041-1050.
No Suggested Reading articles found!