Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (8): 944-954    DOI: 10.11900/0412.1961.2013.00832
Current Issue | Archive | Adv Search |
FINITE ELEMENT SIMULATION OF WELDING RESIDUAL STRESS FOR BUFFER BEAM OF CRH2A HIGH SPEED TRAIN
ZHU Ruidong1, DONG Wenchao1(), LIN Huaqiang2, LU Shanping1, LI Dianzhong1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of
Sciences, Shenyang 110016
2 National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co., Ltd., Qingdao 266111
Cite this article: 

ZHU Ruidong, DONG Wenchao, LIN Huaqiang, LU Shanping, LI Dianzhong. FINITE ELEMENT SIMULATION OF WELDING RESIDUAL STRESS FOR BUFFER BEAM OF CRH2A HIGH SPEED TRAIN. Acta Metall Sin, 2014, 50(8): 944-954.

Download:  HTML  PDF(3769KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A finite element model of the buffer beam is established and the distribution of the welding residual stress is investigated by the finite element method. The results show that the calculated stress agrees well with the measured stress by the indentation strain-gage method. There are large and nonuniform residual stresses in the edge of the bottom flange and the processing hole. The welding of the workpieces hanging has an important effect on the residual stresses of the bottom flange. The replacement of A7N01 aluminum alloy with A6N01 aluminum alloy as the base metal can effectively reduce the residual stresses of the buffer beam. When the reinforcement plate is integrally formed with the buffer beam, the residual tensile stresses near the original weld are reduced remarkably. Two welders operating simultaneously on the opposite welds can significantly reduce the residual tensile stresses of the bottom flange.

Key words:  CRH2A high speed train      buffer beam welded structure      residual stress      finite element method      numerical simulation     
Received:  24 December 2013     
ZTFLH:  TG404  
Fund: Supported by National Natural Science Foundation of China (No.51104142)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00832     OR     https://www.ams.org.cn/EN/Y2014/V50/I8/944

Fig.1  Schematic of measured positions for welding thermal cycle curve (unit: mm, CH1, CH2, CH3—the measured points for welding thermal cycle curves)
Process Welding speed / (mm·s-1) Current / A Voltage / V
HW1 8.6 222 24.5
HW2 7.0 196 24.6
Table 1  Welding parameters for T-shape welds
Fig.2  Buffer beam structure model and mesh
Fig.3  Thermodynamic properties for aluminum alloys A7N01 (a), A6N01 (b) and ER5356 (c)
Fig.4  Schematic of double ellipsoid heat source model (af, b, ar, c—ellipsoidal heat source parameters, Qf—heat energy density in the front half, Qr—heat energy density in the rear half)
Fig.5  Clamping condition
Fig.6  Comparisons of the experimental (a, d) and calculated (b, e) results of weld cross-sections morphologies and sizes (c, f) under processes HW1 (a~c) and HW2 (d~f)
Fig.7  Comparisons of welding thermal cycle curves between experiment and simulation for CH1, CH2 and CH3 point under processes HW1 (a) and HW2 (b)
Fig.8  Welding residual stress of buffer beam
Process Qf / (W·mm-3) Qr / (W·mm-3) af / mm ar / mm b / mm c / mm Q / W
HW1 14.3 17.2 3 5 4 8 5040
HW2 9.7 14.6 4 6 4 5 4767
Table 2  Fitting parameters for double ellipsoid heat source model
Fig.9  Welding residual stress of buffer beam before workpieces hanging welding
Fig.10  Schematics of test positions of residual stress in third place side (a) and fourth place side (b) (unit: mm)
Fig.11  Comparisons of transverse (a) and longitudinal (b) residual stress between experiment and calculation for the bottom flange of buffer beam
Fig.12  Schematic of calculated positions for residual stress in third place side
Fig.13  Transverse (a) and longitudinal (b) residual stress along path a under different welding structures
Fig.14  Transverse (a) and longitudinal (b) residual stress along path b under different welding structures
Fig.15  Transverse residual stress along path c under different welding structures
Fig.16  Transverse (a) and longitudinal (b) residual stress along path a under different welding sequences
Fig.17  Transverse (a) and longitudinal (b) residual stress along path b under different welding sequences
[1] Zhang L, Fang H Y, Wang L S, Liu X S. Trans China Weld Inst, 2012; 33(11): 97
(张 亮, 方洪渊, 王林森, 刘雪松. 焊接学报, 2012; 33(11): 97)
[2] Liu X S, Zhang L, Wang L S, Wu S H, Fang H Y. Trans Nonferrous Met Soc China, 2012; 22: 2390
[3] Wang P, Liu X S, Wang Q, Fang H Y. Trans China Weld Inst, 2013; 34(6): 45
(王 苹, 刘雪松, 王 强, 方洪渊. 焊接学报, 2013; 34(6): 45)
[4] Yan Z J, Liu X S, Fang H Y, Shang Z, Wang R, Meng L C. Trans China Weld Inst, 2013; 34(4): 105
(闫忠杰, 刘雪松, 方洪渊, 尚 哲, 汪 认, 孟立春. 焊接学报, 2013; 34(4): 105)
[5] De A, DebRoy T. Sci Technol Weld Joi, 2011; 26: 204
[6] Aloraier A S, Joshi S. Mater Sci Eng, 2012; A534: 13
[7] Mark A F, Francis J A, Dai H, Turski M, Hurrell P R, Bate S K, Kornmeier J R, Withers P J. Acta Mater, 2012; 60: 3268
[8] Teng T L, Chang P H, Tseng W C. Comput Struct, 2003; 81: 273
[9] Deng D A. Mater Des, 2013; 49: 1022
[10] Deng D A, Murakawa H. Comp Mater Sci, 2006; 37: 269
[11] Ogawa K, Deng D A, Kiyoshima S, Yanagida N, Saito K. Comp Mater Sci, 2009; 45: 1031
[12] Nodeh I R, Serajzadeh S, Kokabi A H. J Mater Process Technol, 2008; 205: 60
[13] Woo W, An G B, Kingston E J, DeWald A T, Smith D J, Hill M R. Acta Mater, 2013; 61: 3564
[14] Deng D A, Murakawa H, Liang W. Comp Mater Sci, 2008; 42: 234
[15] Preston R V, Shercliff H R, Withers P J, Smith S. Acta Mater, 2004; 52: 4973
[16] Moraitis G A, Labeas G N. J Mater Process Technol, 2008; 198: 260
[17] Zain-Ul-Abdein M, Nélias D, Jullien J F, Deloison D. Mater Sci Eng, 2010; A527: 3025
[18] Zain-Ul-Abdein M, Nélias D, Jullien J F, Boitout F, Dischert L, Noe X. Int J Pres Ves Pip, 2011; 88: 45
[19] Asle Zaeem M, Nami M R, Kadivar M H. Comp Mater Sci, 2007; 38: 588
[20] Schenk T, Richardson I M, Kraska M, Ohnimus S. Comp Mater Sci, 2009; 45: 999
[21] Pearce S V, Linton V M, Oliver E C. Mater Sci Eng, 2008; A480: 411
[22] Abid M, Siddique M. Int J Pres Ves Pip, 2005; 82: 860
[23] Kong F R, Ma J J, Kovacevic R. J Mater Process Technol, 2011; 211: 1102
[24] Underwood J H. Exp Mech, 1973; 9: 373
[25] Chen H N, Lin Q H, Li T R, Qu P C. Trans China Weld Inst, 2006; 27(8): 27
(陈怀宁, 林泉洪, 李太仁, 曲鹏程. 焊接学报, 2006; 27(8): 27)
[26] Goldak J, Chakravarti A, Bibby M. Metall Trans, 1984; 15B: 299
[27] Wu C S. Welding Thermal Process and Molten Pool Shape. Beijing: China Machine Press, 2008: 16
(武传松. 焊接热过程与熔池形态. 北京: 机械工业出版社, 2008: 16)
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[9] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[10] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[11] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[12] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[13] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[15] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
No Suggested Reading articles found!