|
|
Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure |
WANG Yong1,2, ZHANG Weiwen1,2, YANG Chao1,2, WANG Zhi1,2( ) |
1 Guangdong Key Laboratory for Advanced Metallic Materials Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China 2 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China |
|
Cite this article:
WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure. Acta Metall Sin, 2024, 60(2): 247-260.
|
Abstract Lightweight structural materials with excellent strength and good ductility are extensively used in engineering applications. Although nanostructured Al alloys have relatively low density and high strength resulting in high specific strength, their application is severely limited due to their poor ductility. Recently, additive manufacturing (AM) techniques have been rapidly developed and complex lattice structures can be manufactured by AM. Here, a new composite containing titanium alloy lattice structure and nanostructured Al alloy was created. Selected laser melting is used to generate the TC4 three-dimensional lattice structure, which is subsequently hot extruded with the high-strength nanostructure Al84Ni7Gd6Co3 aluminum alloy. Tensile mechanical characteristics and fracture behavior were studied. The research results reveal that the TC4 lattice structure in the composite remains intact and the interface remains flat and clear, and the α and β phases are elongated along the extrusion direction to form a fine lamellar structure. There is a significant volume proportion of nanostructured intermetallic phases and nanocrystalline fcc-Al in the nanostructured aluminum alloy areas. The mechanical property test results reveal that the TC4 three-dimensional lattice structure has a clear limiting influence on fracture initiation and propagation in the nanostructured aluminum alloy region, resulting in good comprehensive tensile mechanical properties of the composite.
|
Received: 14 February 2022
|
|
Fund: National Key Research and Development Program of China(2020YFB2008300);National Key Research and Development Program of China(2020YFB2008301);National Key Research and Development Program of China(2020YFB2008305);Natural Science Foundation of Guangdong Province(2023A-1515011569);High-End Foreign Experts Recruitment Program(G2021163004L);Guangdong International Science and Technology Cooperation Program(2021A05-05050002) |
Corresponding Authors:
WANG Zhi, professor, Tel: (020)87113851, E-mail: wangzhi@scut.edu.cn
|
1 |
Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086
pmid: 30819960
|
2 |
Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng., 2019, A755: 28
|
3 |
Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
|
|
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
|
4 |
Tao N R, Lu K. Preparation techniques for nanostructured metallic materials via plastic deformation [J]. Acta Metall. Sin., 2014, 50: 141
|
|
陶乃镕, 卢 柯. 纳米结构金属材料的塑性变形制备技术 [J]. 金属学报, 2014, 50: 141
doi: 10.3724/SP.J.1037.2013.00803
|
5 |
Lu K. Phase transformation from an amorphous alloy into nanocrystalline materials [J]. Acta Metall. Sin., 1994, 30: B1
|
|
卢 柯. 非晶态合金向纳米晶体的相转变 [J]. 金属学报, 1994, 30: B1
|
6 |
Zhang X, Misra A, Wang H, et al. Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films [J]. J. Appl. Phys., 2005, 97: 094302
|
7 |
Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
|
8 |
Inoue A, Kong F L, Zhu S L, et al. Development and applications of highly functional Al-based materials by use of metastable phases [J]. Mater. Res., 2015, 18: 1414
doi: 10.1590/1516-1439.058815
|
9 |
Lu K. Synjournal of nanocrystalline materials from amorphous solids [J]. Adv. Mater., 1999, 11: 1127
doi: 10.1002/(ISSN)1521-4095
|
10 |
Eckert J, Calin M, Yu P, et al. Al based alloys containing amorphous and nanostructured phases [J]. Rev. Adv. Mater. Sci., 2008, 18: 169
|
11 |
Zhuo L C, Yin E H, Wang H, et al. Hierarchical ultrafine-grained/nanocystalline Al-based bulk alloy with high strength and large plasticity [J]. Intermetallics, 2012, 23: 199
doi: 10.1016/j.intermet.2011.12.004
|
12 |
Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
doi: 10.1016/S1359-6462(01)00781-3
|
13 |
Wang Z, Qu R T, Scudino S, et al. Hybrid nanostructured aluminum alloy with super-high strength [J]. NPG Asia Mater., 2015, 7: e229
doi: 10.1038/am.2015.129
|
14 |
Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
|
|
温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
|
15 |
Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4
pmid: 31704930
|
16 |
Hofmann D C, Kolodziejska J, Roberts S, et al. Compositionally graded metals: A new frontier of additive manufacturing [J]. J. Mater. Res., 2014, 29: 1899
doi: 10.1557/jmr.2014.208
|
17 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
18 |
Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: eaba5581
doi: 10.1126/sciadv.aba5581
|
19 |
Li Z, Zhang M, Li N, et al. Metal frame reinforced bulk metallic glass composites [J]. Mater. Res. Lett., 2020, 8: 60
doi: 10.1080/21663831.2019.1695684
|
20 |
Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
|
|
谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
|
21 |
San Marchi C, Kouzeli M, Rao R, et al. Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture [J]. Scr. Mater., 2003, 49: 861
doi: 10.1016/S1359-6462(03)00441-X
|
22 |
Shao C W, Zhao S, Wang X G, et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique [J]. NPG Asia Mater., 2019, 11: 69
doi: 10.1038/s41427-019-0174-2
|
23 |
Ojima M, Inoue J, Nambu S, et al. Stress partitioning behavior of multilayered steels during tensile deformation measured by in situ neutron diffraction [J]. Scr. Mater., 2012, 66: 139
doi: 10.1016/j.scriptamat.2011.10.018
|
24 |
Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
|
25 |
Lhuissier P, Inoue J, Koseki T. Strain field in a brittle/ductile multilayered steel composite [J]. Scr. Mater., 2011, 64: 970
doi: 10.1016/j.scriptamat.2011.01.048
|
26 |
Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
|
27 |
He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity [J]. Nat. Mater., 2003, 2: 33
pmid: 12652670
|
28 |
Han B O, Lavernia E J, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys [J]. Metall. Mater. Trans., 2005, 36A: 957
|
29 |
Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598
|
30 |
Pawlowski A E, Cordero Z C, French M R, et al. Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms [J]. Mater. Des., 2017, 127: 346
doi: 10.1016/j.matdes.2017.04.072
|
31 |
Rahmani R, Antonov M, Brojan M. Lightweight 3D printed Ti6Al4V-AlSi10Mg hybrid composite for impact resistance and armor piercing shielding [J]. J. Mater. Res. Technol., 2020, 9: 13842
doi: 10.1016/j.jmrt.2020.09.108
|
32 |
Rahmani R, Brojan M, Antonov M, et al. Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance [J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105192
doi: 10.1016/j.ijrmhm.2020.105192
|
33 |
Han J C, Liu C, Jia Y, et al. Research progress on titanium/aluminum composite plate [J]. Chin. J. Nonferrous Met., 2020, 30: 1270
|
|
韩建超, 刘 畅, 贾 燚 等. 钛/铝复合板研究进展 [J]. 中国有色金属学报, 2020, 30: 1270
|
34 |
Wang Z, Prashanth K G, Scudino S, et al. Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders [J]. Intermetallics, 2014, 46: 97
doi: 10.1016/j.intermet.2013.11.005
|
35 |
Zherebtsov S, Mazur A, Salishchev G, et al. Effect of hydrostatic extrusion at 600-700oC on the structure and properties of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2008, A485: 39
|
36 |
Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
|
刘仁慈, 王 震, 刘 冬 等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
|
37 |
Yao W, Wu A P, Zou G S, et al. Formation process of the bonding joint in Ti/Al diffusion bonding [J]. Mater. Sci. Eng., 2008, A480: 456
|
38 |
Jiang B, Ren X P, Hou H L, et al. Analysis of peeling strength and bonding mechanism of Ti/Al foil interface using ultrasonic consolidation process [J]. Rare Met. Mater. Eng., 2019, 48: 3372
|
|
姜 波, 任学平, 侯红亮 等. 超声固结钛/铝箔材界面剥离强度与结合机理分析 [J]. 稀有金属材料与工程, 2019, 48: 3372
|
39 |
Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
|
40 |
Chen W H, He W J, Chen Z J, et al. Effect of wavy profile on the fabrication and mechanical properties of Al/Ti/Al composites prepared by rolling bonding: Experiments and finite element simulations [J]. Adv. Eng. Mater., 2019, 21: 1900637
doi: 10.1002/adem.v21.11
|
41 |
Yu H L, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding [J]. J. Mater. Res., 2017, 32: 3761
doi: 10.1557/jmr.2017.355
|
42 |
Chen W H, He W J, Chen Z J, et al. Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity [J]. Int. J. Plast., 2020, 133: 102806
doi: 10.1016/j.ijplas.2020.102806
|
43 |
Liu J, Wu Y Z, Wang L, et al. Fabrication and characterization of high-bonding-strength Al/Ti/Al-laminated composites via cryorolling [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 871
doi: 10.1007/s40195-020-01041-z
|
44 |
Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
|
45 |
Jafari R, Eghbali B, Adhami M. Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites [J]. Mater. Chem. Phys., 2018, 213: 313
doi: 10.1016/j.matchemphys.2018.04.001
|
46 |
Du Y, Fan G H, Yu T B, et al. Laminated Ti-Al composites: Processing, structure and strength [J]. Mater. Sci. Eng., 2016, A673: 572
|
47 |
Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
|
48 |
Pei Y B, Huang T, Chen F X, et al. Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding [J]. Vacuum, 2020, 181: 109596
doi: 10.1016/j.vacuum.2020.109596
|
49 |
Ma M, Meng X, Liu W C. Microstructure and mechanical properties of Ti/Al/Ti laminated composites prepared by hot rolling [J]. J. Mater. Eng. Perform., 2017, 26: 3569
doi: 10.1007/s11665-017-2769-5
|
50 |
Liu Y, Liu C, Liu W S, et al. Microstructure and properties of Ti/Al lightweight graded material by direct laser deposition [J]. Mater. Sci. Technol., 2018, 34: 945
doi: 10.1080/02670836.2017.1412042
|
51 |
Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
|
52 |
Kim D W, Lee D H, Kim J S, et al. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties [J]. Sci. Rep., 2017, 7: 8110
doi: 10.1038/s41598-017-08681-9
pmid: 28808267
|
53 |
Qin L, Fan M Y, Guo X Z, et al. Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing [J]. Vacuum, 2018, 155: 96
doi: 10.1016/j.vacuum.2018.05.021
|
54 |
Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461
pmid: 27917923
|
55 |
Lyu S, Sun Y B, Ren L, et al. Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites [J]. Intermetallics, 2017, 90: 16
doi: 10.1016/j.intermet.2017.06.007
|
56 |
Marr T, Freudenberger J, Seifert D, et al. Ti-Al composite wires with high specific strength [J]. Metals, 2011, 1: 79
doi: 10.3390/met1010079
|
57 |
Guo B S, Song M, Zhang X M, et al. Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle [J]. Mater. Charact., 2020, 170: 110666
doi: 10.1016/j.matchar.2020.110666
|
58 |
Liu Z W, Cheng N, Zheng Q L, et al. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates [J]. Mater. Sci. Eng., 2018, A710: 392
|
59 |
Ma Y, Mei Q S, Li C L, et al. Microstructure and mechanical behavior of Al-TiAl3 composites containing high content uniform dispersion of TiAl3 particles [J]. Mater. Sci. Eng., 2020, A786: 139435
|
60 |
Zeng Y, Himmler D, Randelzhofer P, et al. Microstructures and mechanical properties of Al3Ti/Al composites produced in situ by high shearing technology [J]. Adv. Eng. Mater., 2019, 21: 1800259
doi: 10.1002/adem.v21.4
|
61 |
Tamizi Junqani M, Madaah Hosseini H R, Azarniya A. Comprehensive structural and mechanical characterization of in-situ Al-Al3Ti nanocomposite modified by heat treatment [J]. Mater. Sci. Eng., 2020, A785: 139351
|
62 |
Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness [J]. Mater. Sci. Eng., 2011, A529: 62
|
63 |
Yang X, Li Y Z, Duan M G, et al. An investigation of ductile fracture behavior of Ti6Al4V alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2022, 890: 161926
doi: 10.1016/j.jallcom.2021.161926
|
64 |
Wang X Q, Gong X B, Chou K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing [J]. Procedia Manuf., 2015, 1: 287
|
65 |
Holovenko Y, Kollo L, Saarna M, et al. Effect of lattice surface treatment on performance of hardmetal-titanium interpenetrating phase composites [J]. Int. J. Refract. Met. Hard Mater., 2020, 86, 105087
doi: 10.1016/j.ijrmhm.2019.105087
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|