Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (2): 247-260    DOI: 10.11900/0412.1961.2022.00046
Research paper Current Issue | Archive | Adv Search |
Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure
WANG Yong1,2, ZHANG Weiwen1,2, YANG Chao1,2, WANG Zhi1,2()
1 Guangdong Key Laboratory for Advanced Metallic Materials Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
2 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
Cite this article: 

WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure. Acta Metall Sin, 2024, 60(2): 247-260.

Download:  HTML  PDF(5531KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Lightweight structural materials with excellent strength and good ductility are extensively used in engineering applications. Although nanostructured Al alloys have relatively low density and high strength resulting in high specific strength, their application is severely limited due to their poor ductility. Recently, additive manufacturing (AM) techniques have been rapidly developed and complex lattice structures can be manufactured by AM. Here, a new composite containing titanium alloy lattice structure and nanostructured Al alloy was created. Selected laser melting is used to generate the TC4 three-dimensional lattice structure, which is subsequently hot extruded with the high-strength nanostructure Al84Ni7Gd6Co3 aluminum alloy. Tensile mechanical characteristics and fracture behavior were studied. The research results reveal that the TC4 lattice structure in the composite remains intact and the interface remains flat and clear, and the α and β phases are elongated along the extrusion direction to form a fine lamellar structure. There is a significant volume proportion of nanostructured intermetallic phases and nanocrystalline fcc-Al in the nanostructured aluminum alloy areas. The mechanical property test results reveal that the TC4 three-dimensional lattice structure has a clear limiting influence on fracture initiation and propagation in the nanostructured aluminum alloy region, resulting in good comprehensive tensile mechanical properties of the composite.

Key words:  aluminum alloy      titanium alloy      lattice structure      composite      strengthening and toughing     
Received:  14 February 2022     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2020YFB2008300);National Key Research and Development Program of China(2020YFB2008301);National Key Research and Development Program of China(2020YFB2008305);Natural Science Foundation of Guangdong Province(2023A-1515011569);High-End Foreign Experts Recruitment Program(G2021163004L);Guangdong International Science and Technology Cooperation Program(2021A05-05050002)
Corresponding Authors:  WANG Zhi, professor, Tel: (020)87113851, E-mail: wangzhi@scut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00046     OR     https://www.ams.org.cn/EN/Y2024/V60/I2/247

Fig.1  Morphologies and microstructure of TC4 lattices by 3D printing and the powders needed for manufacturing Al84Ni7Gd6Co3/TC4 composite
Fig.2  Schematic showing the used processing route for manufacturing Al84Ni7Gd6Co3/TC4 composite
Fig.3  XRD spectrum of the Al84Ni7Gd6Co3/TC4 composite
Fig.4  3D rendering of Al84Ni7Gd6Co3/TC4 composite based on the μ-CT
Fig.5  Microstructures of the Al84Ni7Gd6Co3/TC4 composite
Fig.6  SEM analyses of the Al84Ni7Gd6Co3/TC4 composite near the interface
Fig.7  EBSD results of the Al84Ni7Gd6Co3/TC4 composite near the interface along extrusion direction
Fig.8  Tensile true stress-strain curves of the Al84Ni7Gd6Co3/TC4 composite and the pure Al84Ni7Gd6Co3 alloy (Insets in Fig.8a show the corresponding photographs of tensile samples) (a) and comparisons between the present materials and the other reported Ti/Al composites with the ultimate tensile strength as a function of density (Data for the other materials are taken from the literatures [24,39-61]. AMC—aluminum-based matrix composite) (b)
Fig.9  Fracture behavior characterizations of the Al84Ni7Gd6Co3/TC4 composite
Fig.10  Low (a) and locally high magnified fracture SEM images of areas Ⅰ (b), Ⅱ (c), and Ⅲ (d) of Al84Ni7Gd6Co3/TC4 composite
Fig.11  EBSD results of the fractured Al84Ni7Gd6Co3/TC4 composite near the interface along tensile direction
Fig.12  Schematics of crack generation and propagation model for Al84Ni7Gd6Co3/TC4 composite under tensile load (τ—shear force)
1 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
doi: 10.1126/science.aav7086 pmid: 30819960
2 Zeng X H, Xue P, Wu L H, et al. Achieving an ultra-high strength in a low alloyed Al alloy via a special structural design [J]. Mater. Sci. Eng., 2019, A755: 28
3 Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
4 Tao N R, Lu K. Preparation techniques for nanostructured metallic materials via plastic deformation [J]. Acta Metall. Sin., 2014, 50: 141
陶乃镕, 卢 柯. 纳米结构金属材料的塑性变形制备技术 [J]. 金属学报, 2014, 50: 141
doi: 10.3724/SP.J.1037.2013.00803
5 Lu K. Phase transformation from an amorphous alloy into nanocrystalline materials [J]. Acta Metall. Sin., 1994, 30: B1
卢 柯. 非晶态合金向纳米晶体的相转变 [J]. 金属学报, 1994, 30: B1
6 Zhang X, Misra A, Wang H, et al. Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films [J]. J. Appl. Phys., 2005, 97: 094302
7 Lu L, Shen Y F, Chen X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304: 422
pmid: 15031435
8 Inoue A, Kong F L, Zhu S L, et al. Development and applications of highly functional Al-based materials by use of metastable phases [J]. Mater. Res., 2015, 18: 1414
doi: 10.1590/1516-1439.058815
9 Lu K. Synjournal of nanocrystalline materials from amorphous solids [J]. Adv. Mater., 1999, 11: 1127
doi: 10.1002/(ISSN)1521-4095
10 Eckert J, Calin M, Yu P, et al. Al based alloys containing amorphous and nanostructured phases [J]. Rev. Adv. Mater. Sci., 2008, 18: 169
11 Zhuo L C, Yin E H, Wang H, et al. Hierarchical ultrafine-grained/nanocystalline Al-based bulk alloy with high strength and large plasticity [J]. Intermetallics, 2012, 23: 199
doi: 10.1016/j.intermet.2011.12.004
12 Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
doi: 10.1016/S1359-6462(01)00781-3
13 Wang Z, Qu R T, Scudino S, et al. Hybrid nanostructured aluminum alloy with super-high strength [J]. NPG Asia Mater., 2015, 7: e229
doi: 10.1038/am.2015.129
14 Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
15 Wu G, Liu C, Sun L, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4 pmid: 31704930
16 Hofmann D C, Kolodziejska J, Roberts S, et al. Compositionally graded metals: A new frontier of additive manufacturing [J]. J. Mater. Res., 2014, 29: 1899
doi: 10.1557/jmr.2014.208
17 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
18 Zhang M Y, Yu Q, Liu Z Q, et al. 3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency [J]. Sci. Adv., 2020, 6: eaba5581
doi: 10.1126/sciadv.aba5581
19 Li Z, Zhang M, Li N, et al. Metal frame reinforced bulk metallic glass composites [J]. Mater. Res. Lett., 2020, 8: 60
doi: 10.1080/21663831.2019.1695684
20 Gu R C, Zhang J, Zhang M Y, et al. Fabrication of Mg-based composites reinforced by SiC whisker scaffolds with three-dimensional interpenetrating-phase architecture and their mechanical properties [J]. Acta Metall. Sin., 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
谷瑞成, 张 健, 张明阳 等. 三维互穿结构SiC晶须骨架增强镁基复合材料制备及其力学性能 [J]. 金属学报, 2022, 58: 857
doi: 10.11900/0412.1961.2021.00259
21 San Marchi C, Kouzeli M, Rao R, et al. Alumina-aluminum interpenetrating-phase composites with three-dimensional periodic architecture [J]. Scr. Mater., 2003, 49: 861
doi: 10.1016/S1359-6462(03)00441-X
22 Shao C W, Zhao S, Wang X G, et al. Architecture of high-strength aluminum-matrix composites processed by a novel microcasting technique [J]. NPG Asia Mater., 2019, 11: 69
doi: 10.1038/s41427-019-0174-2
23 Ojima M, Inoue J, Nambu S, et al. Stress partitioning behavior of multilayered steels during tensile deformation measured by in situ neutron diffraction [J]. Scr. Mater., 2012, 66: 139
doi: 10.1016/j.scriptamat.2011.10.018
24 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
25 Lhuissier P, Inoue J, Koseki T. Strain field in a brittle/ductile multilayered steel composite [J]. Scr. Mater., 2011, 64: 970
doi: 10.1016/j.scriptamat.2011.01.048
26 Yang M X, Pan Y, Yuan F P, et al. Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett., 2016, 4: 145
doi: 10.1080/21663831.2016.1153004
27 He G, Eckert J, Löser W, et al. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity [J]. Nat. Mater., 2003, 2: 33
pmid: 12652670
28 Han B O, Lavernia E J, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys [J]. Metall. Mater. Trans., 2005, 36A: 957
29 Hofmann D C, Suh J Y, Wiest A, et al. Designing metallic glass matrix composites with high toughness and tensile ductility [J]. Nature, 2008, 451: 1085
doi: 10.1038/nature06598
30 Pawlowski A E, Cordero Z C, French M R, et al. Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms [J]. Mater. Des., 2017, 127: 346
doi: 10.1016/j.matdes.2017.04.072
31 Rahmani R, Antonov M, Brojan M. Lightweight 3D printed Ti6Al4V-AlSi10Mg hybrid composite for impact resistance and armor piercing shielding [J]. J. Mater. Res. Technol., 2020, 9: 13842
doi: 10.1016/j.jmrt.2020.09.108
32 Rahmani R, Brojan M, Antonov M, et al. Perspectives of metal-diamond composites additive manufacturing using SLM-SPS and other techniques for increased wear-impact resistance [J]. Int. J. Refract. Met. Hard Mater., 2020, 88: 105192
doi: 10.1016/j.ijrmhm.2020.105192
33 Han J C, Liu C, Jia Y, et al. Research progress on titanium/aluminum composite plate [J]. Chin. J. Nonferrous Met., 2020, 30: 1270
韩建超, 刘 畅, 贾 燚 等. 钛/铝复合板研究进展 [J]. 中国有色金属学报, 2020, 30: 1270
34 Wang Z, Prashanth K G, Scudino S, et al. Effect of ball milling on structure and thermal stability of Al84Gd6Ni7Co3 glassy powders [J]. Intermetallics, 2014, 46: 97
doi: 10.1016/j.intermet.2013.11.005
35 Zherebtsov S, Mazur A, Salishchev G, et al. Effect of hydrostatic extrusion at 600-700oC on the structure and properties of Ti-6Al-4V alloy [J]. Mater. Sci. Eng., 2008, A485: 39
36 Liu R C, Wang Z, Liu D, et al. Microstructure and tensile properties of Ti-45.5Al-2Cr-2Nb-0.15B alloy processed by hot extrusion [J]. Acta Metall. Sin., 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
刘仁慈, 王 震, 刘 冬 等. Ti-45.5Al-2Cr-2Nb-0.15B合金热挤压组织与拉伸性能研究 [J]. 金属学报, 2013, 49: 641
doi: 10.3724/SP.J.1037.2012.00762
37 Yao W, Wu A P, Zou G S, et al. Formation process of the bonding joint in Ti/Al diffusion bonding [J]. Mater. Sci. Eng., 2008, A480: 456
38 Jiang B, Ren X P, Hou H L, et al. Analysis of peeling strength and bonding mechanism of Ti/Al foil interface using ultrasonic consolidation process [J]. Rare Met. Mater. Eng., 2019, 48: 3372
姜 波, 任学平, 侯红亮 等. 超声固结钛/铝箔材界面剥离强度与结合机理分析 [J]. 稀有金属材料与工程, 2019, 48: 3372
39 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
40 Chen W H, He W J, Chen Z J, et al. Effect of wavy profile on the fabrication and mechanical properties of Al/Ti/Al composites prepared by rolling bonding: Experiments and finite element simulations [J]. Adv. Eng. Mater., 2019, 21: 1900637
doi: 10.1002/adem.v21.11
41 Yu H L, Lu C, Tieu K, et al. Enhanced materials performance of Al/Ti/Al laminate sheets subjected to cryogenic roll bonding [J]. J. Mater. Res., 2017, 32: 3761
doi: 10.1557/jmr.2017.355
42 Chen W H, He W J, Chen Z J, et al. Extraordinary room temperature tensile ductility of laminated Ti/Al composite: Roles of anisotropy and strain rate sensitivity [J]. Int. J. Plast., 2020, 133: 102806
doi: 10.1016/j.ijplas.2020.102806
43 Liu J, Wu Y Z, Wang L, et al. Fabrication and characterization of high-bonding-strength Al/Ti/Al-laminated composites via cryorolling [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 871
doi: 10.1007/s40195-020-01041-z
44 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
45 Jafari R, Eghbali B, Adhami M. Influence of annealing on the microstructure and mechanical properties of Ti/Al and Ti/Al/Nb laminated composites [J]. Mater. Chem. Phys., 2018, 213: 313
doi: 10.1016/j.matchemphys.2018.04.001
46 Du Y, Fan G H, Yu T B, et al. Laminated Ti-Al composites: Processing, structure and strength [J]. Mater. Sci. Eng., 2016, A673: 572
47 Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
48 Pei Y B, Huang T, Chen F X, et al. Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding [J]. Vacuum, 2020, 181: 109596
doi: 10.1016/j.vacuum.2020.109596
49 Ma M, Meng X, Liu W C. Microstructure and mechanical properties of Ti/Al/Ti laminated composites prepared by hot rolling [J]. J. Mater. Eng. Perform., 2017, 26: 3569
doi: 10.1007/s11665-017-2769-5
50 Liu Y, Liu C, Liu W S, et al. Microstructure and properties of Ti/Al lightweight graded material by direct laser deposition [J]. Mater. Sci. Technol., 2018, 34: 945
doi: 10.1080/02670836.2017.1412042
51 Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
52 Kim D W, Lee D H, Kim J S, et al. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties [J]. Sci. Rep., 2017, 7: 8110
doi: 10.1038/s41598-017-08681-9 pmid: 28808267
53 Qin L, Fan M Y, Guo X Z, et al. Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing [J]. Vacuum, 2018, 155: 96
doi: 10.1016/j.vacuum.2018.05.021
54 Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461 pmid: 27917923
55 Lyu S, Sun Y B, Ren L, et al. Simultaneously achieving high tensile strength and fracture toughness of Ti/Ti-Al multilayered composites [J]. Intermetallics, 2017, 90: 16
doi: 10.1016/j.intermet.2017.06.007
56 Marr T, Freudenberger J, Seifert D, et al. Ti-Al composite wires with high specific strength [J]. Metals, 2011, 1: 79
doi: 10.3390/met1010079
57 Guo B S, Song M, Zhang X M, et al. Achieving high combination of strength and ductility of Al matrix composite via in-situ formed Ti-Al3Ti core-shell particle [J]. Mater. Charact., 2020, 170: 110666
doi: 10.1016/j.matchar.2020.110666
58 Liu Z W, Cheng N, Zheng Q L, et al. Processing and tensile properties of A356 composites containing in situ small-sized Al3Ti particulates [J]. Mater. Sci. Eng., 2018, A710: 392
59 Ma Y, Mei Q S, Li C L, et al. Microstructure and mechanical behavior of Al-TiAl3 composites containing high content uniform dispersion of TiAl3 particles [J]. Mater. Sci. Eng., 2020, A786: 139435
60 Zeng Y, Himmler D, Randelzhofer P, et al. Microstructures and mechanical properties of Al3Ti/Al composites produced in situ by high shearing technology [J]. Adv. Eng. Mater., 2019, 21: 1800259
doi: 10.1002/adem.v21.4
61 Tamizi Junqani M, Madaah Hosseini H R, Azarniya A. Comprehensive structural and mechanical characterization of in-situ Al-Al3Ti nanocomposite modified by heat treatment [J]. Mater. Sci. Eng., 2020, A785: 139351
62 Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness [J]. Mater. Sci. Eng., 2011, A529: 62
63 Yang X, Li Y Z, Duan M G, et al. An investigation of ductile fracture behavior of Ti6Al4V alloy fabricated by selective laser melting [J]. J. Alloys Compd., 2022, 890: 161926
doi: 10.1016/j.jallcom.2021.161926
64 Wang X Q, Gong X B, Chou K. Scanning speed effect on mechanical properties of Ti-6Al-4V alloy processed by electron beam additive manufacturing [J]. Procedia Manuf., 2015, 1: 287
65 Holovenko Y, Kollo L, Saarna M, et al. Effect of lattice surface treatment on performance of hardmetal-titanium interpenetrating phase composites [J]. Int. J. Refract. Met. Hard Mater., 2020, 86, 105087
doi: 10.1016/j.ijrmhm.2019.105087
[1] CHENG Lei, ZHANG Xuhang, HAN Ying, CHENG Zhicheng, YU Wei. Effects of Interlayer Materials Fe and Nb on Interfacial Shear Strength of Hot Extruded High-Strength Titanium-Steel Composite Pipe[J]. 金属学报, 2024, 60(1): 117-128.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[4] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[5] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[6] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[7] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[8] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[9] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[10] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[12] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[13] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[14] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[15] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
No Suggested Reading articles found!