Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (2): 159-166    DOI: 10.3724/SP.J.1037.2012.00515
Current Issue | Archive | Adv Search |
EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL
DONG Danyang1), LIU Yang2), WANG Lei2), SU Liangjin1)
1) College of Science, Northeastern University, Shenyang 110819
2) Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
Cite this article: 

DONG Danyang, LIU Yang, WANG Lei, SU Liangjin. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL. Acta Metall Sin, 2013, 49(2): 159-166.

Download:  PDF(5553KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Tensile properties and deformation behavior of DP780 steel were studied using servo-hydraulic high-speed material testing machine, SEM and TEM. The effects of strain rate and the mechanism were investigated. The results showed that the strength and ductility of DP780 steel remained almost unchanged as the strain rate increased at strain rates lower than 100 s-1. When the strain rate was over 101 s-1, the strength and the strain-hardening coefficient increased remarkably. Ductility of DP780 steel increased significantly at the strain rates ranging from 3~101 to 5~102 s-1. The deformation resistance increased with increasing the strain rate due to the stronger short range resistance induced by the acceleration of dislocation motion in the ferrite matrix. Increasing strain rate up to 3~101 s-1 resulted in a considerable increase of the amount of mobile dislocation, which was the main reason for the increasing uniform elongation and fracture elongation of DP780 steel at the strain rate ranging from 3~101 to 5~102 s-1. Interface of ferrite-martensite in DP780 steel was the main location for pile-up of dislocation, crack initiation and propagation. The ability of inhomogeneous plastic deformation of DP780 steel increased due to the decreasing plastic strain energy difference between the ferrite matrix and ferrite-martensite interface and the consequent delaying initiation and propagation of microvoids at ferrite-martensite interface induced by the increasing work hardening degree of ferrite matrix with the increasing strain rate.

Key words:  dual phase steel      dynamic load      strain rate      deformation behavior     
Received:  04 September 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00515     OR     https://www.ams.org.cn/EN/Y2013/V49/I2/159

[1] Curtze S, Kuokkala V T, Hokka M, Peura P. Mater Sci Eng, 2009; A507: 124


[2] Huh H, Lim J H, Park S H. Int J Auto Tech-Kor, 2009; 10(2): 195

[3] Khan A S, Baig M, Choi S H, Yang H S, Sun X. Int J Plast, 2012; 30-31: 1

[4] Ma M T, Yi H L, Lu H Z, Wan X M. Eng Sci, 2009; 11(9): 20

(马鸣图, 易红亮, 路洪洲, 万鑫铭. 中国工程科学, 2009; 11(9): 20)

[5] Maggi S, Murgia M. Weld Int, 2008; 22: 610

[6] Reisgen U, Schleser M, Mokrov O, Ahmed E. J Mater Process Technol, 2010; 210: 2188

[7] Yu H D, Guo Y J, Lai X M. Mater Des, 2009; 30: 2501

[8] Wang H Y, Chen J Y. Lightweight Structure of Autobody and Lightweight Material.

Beijing: Peking University Press, 2009: 20

(王宏雁, 陈军毅. 汽车车身轻量化结构与轻质材料. 北京: 北京大学出版社, 2009: 20)

[9] Singh N K, Cadoni E, Singha M K, Gupta N K. Mater Des, 2011; 32: 5091

[10] Wei X C, Fu R Y, Li L. Mater Sci Eng, 2007; A465: 260

[11] Oliver S, Jones T B, Fourlaris G. Mater Charact, 2007; 58: 390

[12] Boyce B L, Dilmore M F. Int J Impact Eng, 2009; 36: 263

[13] Huh H, Kim S B, Song J H, Lim J H. Int J Mech Sci, 2008; 50: 918

[14] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541

[15] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511

[16] Odeshi A G, Al-ameeri S, Bassim M N. J Mater Process Technol, 2005; 162-163: 385

[17] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565

[18] Ludwik P. Physics, 1909; 10Z: 411

[19] Hollomon J H. Trans ASM, 1944; 32: 123

[20] Plumbridge W J. J Mater Sci, 1996; 31: 2501

[21] Castany P, Pettinari-Sturmel F, Crestou J, Douin J, Coujou A. Acta Mater, 2007; 55: 6284

[22] Walgraef D. Mater Sci Eng, 2010; A322: 167

[23] Johnston W G, Gilman J J. J Appl Phys, 1959; 30: 129

[24] Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, Lu Z J.

 Dynamic Behavior of Materials. Beijing: National Defense Industry Press, 2006: 225

(Meyers M A著, 张庆明, 刘彦, 黄风雷, 吕中杰译. 材料的动力学行为. 北京: 国防工业出版社, 2006: 225)

[25] Rajeev K, Sia N N. Metall Mater Trans, 2000; 31A: 815

[26] Liu Y, Wang L, He S S, Feng F, Lu X D, Zhang B J. Acta Metall Sin, 2012; 48: 49

(刘杨, 王磊, 何思斯, 冯飞, 吕旭东, 张北江. 金属学报, 2012; 48: 49)

[27] Liu J T, Wang Z G, Shang J K. Acta Metall Sin, 2008; 44: 1409

(刘江涛, 王中光, 尚建库. 金属学报, 2008; 44: 1409)

[28] Liu Z L, You X C, Zhuang Z. Int J Solids Struct, 2008; 45: 3674

[29] Livingston J D, Chalmers B. Acta Mater, 1957; 5: 322

[30] Rajeev K, Sia N N. Mech Mater, 1998; 27(1): 1

[31] Tang C G, Zhu J H, Zhou H J. Chin J Mater Res, 1996; 10: 19

(唐长国, 朱金华, 周惠久. 材料研究学报, 1996; 10: 19)

[32] Rusinek A, Klepaczko J R. Mater Des, 2009; 30(1): 35
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[4] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] CHU Shuangjie, MAO Bo, HU Guangkui. Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications[J]. 金属学报, 2022, 58(4): 551-566.
[7] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[9] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[11] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[12] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[13] Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy[J]. 金属学报, 2017, 53(8): 968-974.
[14] Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. 金属学报, 2017, 53(5): 513-523.
[15] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
No Suggested Reading articles found!