Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 49-55    DOI: 10.3724/SP.J.1037.2011.00435
论文 Current Issue | Archive | Adv Search |
EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY
LIU Yang1), WANG Lei1), HE Sisi1), FENG Fei1), LV Xudong2), ZHANG Beijiang2)
1) Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
2) Department of High-temperature Materials, Central Iron and Steel Research Institute, Beijing 100081
Cite this article: 

LIU Yang WANG Lei HE Sisi FENG Fei LV Xudong ZHANG Beijiang. EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY. Acta Metall Sin, 2012, 48(1): 49-55.

Download:  PDF(4309KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In traditional aeroengine manufacturing industry, the variation and mechanism of the mechanical property of superalloy used for rotating parts under the actual dynamic load is not given full considerations during its structure design. The mechanical property and deformation behavior of the alloys under the dynamic load have significant difference compared with that under the static load, and therefore the study on the deformation behavior of the alloy under the dynamic load is important for the safety of rotating parts used under the severe service conditions. The effect of microstructural changes of long-term aging GH4169 alloy on the mechanical properties through tensile testing at strain rates ranging from 101 to 103 s-1 was examined in this paper. The tensile deformation behavior of the alloy and the mechanisms were also discussed. The results showed that the strength of the alloy depends strongly on the aging time, the fracture elongation decreases with the increasing aging time and remains unchanged when aged for 500 h when tensile tested at the strain rates ranging from 101 to 103 s-1. And when the strain rate is high up to 103 s-1, the elongation depends strongly on the aging time and the degradation of ductility by the long-term aging happens ahead of time, but the aging time has no obvious effect on the strength of the alloy. Through tensile testing at the strain rate of 103 s-1, it is too late to release the blocked dislocation motion in the way of dislocation decomposition or climb in the alloy. And there is no peaking size effect of the strengthening phase in the alloy with the aging time ranging from 0 to 1000 h and there is no obvious effect of the aging time on the strength of the alloy. The ability of accommodation of plastic deformation by grain boundaries reduces under the dynamic loads due to the existence of precipitate free zones around δ phase at the grain boundary in the alloy by long-term aging, and thus the ductility of the alloy by aging for a shorter time decreases rapidly when tensile tested at the strain rate of 103 s-1.
Key words:  GH4169 alloy      long-term aging      dynamic load      deformation behavior     
Received:  11 July 2011     
Fund: 

Supported by National Basic Research Program of China (No.2010CB631203), National Natural Science Foundation of China (No. 51001021) and Doctoral Fund of Ministry of Education of China (Nos.20100042120008 and 20100042110006)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00435     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/49

[1] Soo S L, Hood R, Aspinwall D K, Voice W E, Sage C. CIRP Ann–Manuf Technol, 2011; 60: 89

[2] Fang N, Wu Q. J Mater Process Technol, 2009; 209: 4385

[3] Sharghi–Moshtagh R, Asgari S. J Mater Process Technol, 2004; 147: 343

[4] Graverend J B, Cormier J, Caron P, Kruch S, Gallerneau F, Mendez J. Mater Sci Eng, 2011; A528: 2620

[5] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Acta Metall Sin, 2010; 46: 213

(秦学智, 郭建亭, 袁超, 侯介山, 周兰章, 叶恒强. 金属学报, 2010; 46: 213)

[6] Li G H, Wang M J, Kang R K. Mater Sci Technol, 2010; 18: 824

(李国和, 王敏杰, 康仁科. 材料科学与工艺, 2010; 18: 824)

[7] Zan X, He Y H, Wang Y, Xia Y M. Trans Nonferrous Met Soc, 2011; 21: 45

[8] Lee W S, Lin C F. Mater Sci Eng, 1998; A241: 48

[9] Smerd R, Winkler S, Salisbury C, Worswick M, Lloyd D, Finn M. Int J Impact Eng, 2005; 32: 541

[10] Ishikawa K, Watanabe H, Mukai T. Mater Lett, 2005; 59: 1511

[11] Odeshi A G, Al–ameeri S, Bassim M N. J Mater Process Technol, 2005; 162–163: 385

[12] Gong X, Fan J L, Huang B Y, Tian J M. Mater Sci Eng, 2010; A527: 7565

[13] Lu X D, Du J H, Deng Q, Qu J L, Zhuang J Y, Zhong Z Y. Mater Sci Eng, 2007; A452–453: 584

[14] Hajmrle K, Aangers R, Dufour G. Metall Trans, 1982; 13A: 5

[15] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289

(谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)

[16] Wang L. Mechanical Properties of Materials. Shenyang: Northeastern University Press, 2007: 42

(王磊. 材料的力学性能. 沈阳: 东北大学出版社, 2007: 42)

[17] Walgraef D. Mater Sci Eng, 2010; A322: 167

[18] Ning Y Q, Yao Z K, Xie X H, Guo H Z, Tan L J, Tao Y. Acta Metall Sin, 2010; 46: 324

(宁永权, 姚泽坤, 谢兴华, 郭鸿镇, 谭立军, 陶宇. 金属学报, 2010; 46: 324)

[19] Zhang J H, Jin T, Xu Y B, Hu Z Q, Wu X. J Mater Sci Technol, 2002; 18: 159

[20] Deng Z Y, Huang B Y, He Y H, Sun J. Rare Met Mater Eng, 1999; 28: 228

(邓忠勇, 黄伯云, 孙跃辉, 孙坚. 稀有金属材料与工程, 1999; 28: 228)

[21] Meyers M A, translated by Zhang Q M, Liu Y, Huang F L, Lu Z J. Dynamic Behavior of Materials. Beijing: National Defense Industry Press, 2006: 225

(Meyers M A著; 张庆明, 刘彦, 黄风雷, 吕中杰 译. 材料的动力学行为. 北京: 国防工业出版社, 2006: 225)

[22] Xie X S, Dong J X, Zhang M C. Mater Sci Forum, 2007; 539–543: 262

[23] Zhang J X, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S. Metall Mater Trans, 2002; 33A: 3741

[24] Lours P, Coujou A, Coulomb P. Acta Metall Mater, 1991; 39: 1787

[25] Wang K, Li M Q, Luo J, Li C. Mater Sci Eng, 2011; A528: 4723

[26] Wang Y W, Yang L Y, You W, Bai B Z. Mater Sci Forum, 2005; 475–479: 3003
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] ZHANG Weidong, CUI Yu, LIU Li, WANG Wenquan, LIU Rui, LI Rui, WANG Fuhui. Corrosion Behavior of GH4169 Alloy in NaCl Solution Spray Environment at 600oC[J]. 金属学报, 2023, 59(11): 1475-1486.
[5] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[6] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[7] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[8] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[9] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[10] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[11] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
[12] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
[13] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[14] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[15] Xianchao HAO,Long ZHANG,Chao XIONG,Yingche MA,Kui LIU. EFFECT OF LONG-TERM AGING AT 760 ℃ ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-Cr-W-Fe ALLOY[J]. 金属学报, 2015, 51(7): 807-814.
No Suggested Reading articles found!