Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1493-1500    DOI: 10.3724/SP.J.1037.2013.00341
Current Issue | Archive | Adv Search |
EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS
DONG Danyang 1), LIU Yang 2), WANG Lei 2),YANG Yuling 1), LI Jinfeng 1), JIN Mengmeng 1)
1) College of Science, Northeastern University, Shenyang 110819
2) Key Lab for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819
Cite this article: 

DONG Danyang, LIU Yang, WANG Lei, YANG Yuling, LI Jinfeng, JIN Mengmeng. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS. Acta Metall Sin, 2013, 49(12): 1493-1500.

Download:  PDF(4618KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dual phase (DP) steels have good combinations of strength and ductility, and are being increasingly used in vehicle body structures to meet enhanced government regulations and safety standards. The use of DP steels in automotive industries involves laser welding, which would lead to changes in local material properties and create potential safety and reliability issues under dynamic loads. The present work aimed to study the effects of strain rate on tensile properties and deformation behavior of laser welded DP780 steel joints. The results showed that the deformation behavior of laser welded joints was more sensitive to strain rate as compared to base metal of DP780 steel. The strength of DP780 steel joint increased with increasing strain rate, while the ductility decreased first with increasing strain rate from 10-3 to 101 s-1, and then increased up to a strain rate of 102 s-1. The strain rate sensitivity of the deformation behavior of DP780 steel joints was mainly dependent on the change of deformation behavior and its mechanisms of base metal at various strain  rates. The distance of the tensile failure location from the weld centerline decreased obviously with the increase of strain rate. And the failure location changed from the base metal to the softened heat—affected zone (HAZ) as strain rate increased. The mechanism for changing failure location can be related to the strain rate dependence of the plastic deformation behaviors of microstructures in various regions across a joint.

Key words:  laser welding      dual phase steel      dynamic load      strain rate      deformation behavior     
Received:  21 June 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00341     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1493

[1] Sodjit S, Uthaisangsuk V.  Mater Des, 2012; 41: 370
[2] Oliver S, Jones T B, Fourlaris G.  Mater Charact, 2007; 58: 390

[3] Khan A S, Baig M, Choi S H, Yang H S, Sun X.  Int J Plast, 2012; 30—31: 1<
[4] Huh J, Huh H, Lee C S.  Int J Plast, 2013; 44: 23
[5] Xia M, Sreenivasan N, Lawson S, Zhou Y, Tian Z.  J Eng Mater Technol, 2007; 129: 446
[6] Oliver S, Jones T B, Fourlaris G.  Mater Sci Technol, 2007; 23: 55
[7] Sharma R S, Molian P.  J Mater Process Technol, 2011; 211: 1888
[8] Xu W, Westerbaan D, Nayak S S, Chen D L, Goodwin F, Zhou Y.  Mater Des, 2013; 43: 373
[9] Farabi N, Chen D L, Li J, Zhou Y, Dong S J.  Mater Sci Eng, 2010; A527: 1215
[10] Reisgen U, Schleser M, Mokrov O, Ahmed E.  J Mater Process Technol, 2010; 210: 2188
[11] Hazratinezhad M, Mostafa Arab N B, Sufizadeh A R, Torkamany M J.Mater Des, 2012; 33: 83
[12] Sreenivasan N, Xia M, Lawson S, Zhou Y.  J Eng Mater Technol, 2008; 130: 0410041
[13] Farabi N, Chen D L, Zhou Y.  Procedia Eng, 2010; 2: 835
[14] Boyce B L, Dilmore M F.  Int J Impact Eng, 2009; 36: 263
[15] Kim J H, Kim D, Han H N, Barlat F, Lee M G.  Mater Sci Eng, 2013; A559: 222
[16] Wang W R, Li M, He C W, Wei X C, Wang D Z, Du H B.  Mater Des, 2013; 47: 510
[17] He Z P, He Y L, Ling Y T, Wu Q H, Gao Y, Li L.  J Mater Process Technol, 2012; 212: 2141
[18] Sun X, Soulami A, Choi K S, Guzman O, Chen W.  Mater Sci Eng, 2012; A541: 1
[19] Curtze S, Kuokkala V T, Hokka M, Peura P.  Mater Sci Eng, 2009; A507: 124
[20] Huh H, Kim S B, Song J H, Lim J H.  Int J Mech Sci, 2008; 50: 918
[21] Dong D Y, Liu Y, Wang L, Su L J.  Acta Metall Sin, 2013; 49: 159
(董丹阳, 刘杨, 王磊, 苏亮进. 金属学报, 2013; 49: 159)
[22] Baltazar Hernandez V H, Nayak S S, Zhou Y.  Metall Mater Trans, 2011; 42A: 3115
[23] Panda S K, Screenivasan N, Kuntz M L, Zhou Y.  J Eng Mater Technol, 2008; 130: 0410031
[24] Meyers M A.  Dynamic Behavior of Materials. 2nd Ed., New York: John Wiley and Sons Inc, 2006: 330
[25] Johnston W G, Gilman J J.  J Appl Phys, 1959; 30: 129
[26] Liu Y, Wang L, He S S, Feng F, Lu X D, Zhang B J.  Acta Metall Sin, 2012; 48: 49
(刘杨, 王磊, 何思斯, 冯飞, 吕旭东, 张北江. 金属学报, 2012; 48: 49)
[27] Liu J T, Wang Z G, Shang J K.  Acta Metall Sin, 2008; 44: 1409
(刘江涛, 王中光, 尚建库. 金属学报, 2008; 44: 1409)
[28] Liu Z L, You X C, Zhuang Z.  Int J Solids Struct, 2008; 45: 3674
[29] Livingston J D, Chalmers B.  Acta Mater, 1957; 5: 322
[30] Rusinek A, Klepaczko J R.  Mater Des, 2009; 30: 35
[31] Meyer L W, Herzig N, Halle T, Hahn F, Krueger L, Staudhammer K P.J Mater Process Technol, 2007; 182: 319
[32] Rajeev K, Sia N N.  Mech Mater, 1998; 27: 1
[33] Shao H P, Gould J, Albright C.  Metall Mater Trans, 2007; 38B: 321
[34] Ghoo B Y, Keum Y T, Kim Y S.  J Mater Process Technol, 2001; 113: 692
[35] Dry D, Waddell W, Owen D R J.  Sci Technol Weld Joining, 2002; 7: 11
[36] Dirras G, Gubicza J, Couque H, Ouarem A, Jenei P.  Mater Sci Eng, 2013; A564: 273
[37] Zhu D Z, Wu G H, Chen G Q, Zhang Q.  Mater Sci Eng, 2008; A487: 536
[38] Lee W S, Lin C F.  Mater Sci Eng, 1998; A241: 48
[39] Paul S K.  Comput Mater Sci, 2012; 56: 34
[40] Sodjit S, Uthaisangsuk V.  Mater Des, 2012; 41: 370
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[4] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] CHU Shuangjie, MAO Bo, HU Guangkui. Microstructure Control and Strengthening Mechanism of High Strength Cold Rolled Dual Phase Steels for Automobile Applications[J]. 金属学报, 2022, 58(4): 551-566.
[7] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[8] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[9] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[10] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[11] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[12] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[13] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[14] Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy[J]. 金属学报, 2017, 53(8): 968-974.
[15] Xu YANG, Bo LIAO, Jian LIU, Wei YAN, Yiyin SHAN, Furen XIAO, Ke YANG. Embrittlement Phenomenon of China Low Activation Martensitic Steel in Liquid Pb-Bi[J]. 金属学报, 2017, 53(5): 513-523.
No Suggested Reading articles found!