Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 744-748    DOI: 10.3724/SP.J.1037.2012.00032
论文 Current Issue | Archive | Adv Search |
STUDY ON PASSIVATING TREATMENT OF Cu-Ni ALLOY IN COMPOUND PASSIVANT CONTAINING BENZOTRIAZOLE
WANG Yanqiu1, SHAO Yawei1, MENG Guozhe1, ZHANG Tao1,WANG Fuhui1,2
1. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,Shenyang 110016
Cite this article: 

WANG Yanqiu, SHAO Yawei, MENG Guozhe, ZHANG Tao,WANG Fuhui. STUDY ON PASSIVATING TREATMENT OF Cu-Ni ALLOY IN COMPOUND PASSIVANT CONTAINING BENZOTRIAZOLE. Acta Metall Sin, 2012, 48(6): 744-748.

Download:  PDF(598KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Cu-Ni alloy has excellent corrosion resistance in marine environment and so it is widely used as seawater pipework in ships; however its corrosion resistance will decrease rapidly in sulphide--polluted seawater. Benzotriazole (BTA) is an excellent inhibitor for corrosion of copper and its alloys due to the formation of passivation film of Cu(I)BTA. In this work, passivation film was prepared on B10 Cu--Ni alloy in compound BTA passivant for improving its corrosion resistance against sulphide--polluted seawater. Corrosion resistance of the passivation films was studied by potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS); surface wettability of the films was characterized using contact angle test; X--ray photoelectron spectroscopy (XPS) was used to analyze the chemical compositions of the films. The results show that the passivation film prepared in compound passivant containing BTA and sulfosalicylic acid has better corrosion resistance than that in single BTA passivant; the higher corrosion resistance of the compound film results from synergetic effect of Cu(I)BTA and a complex compound which is a reaction product between sulfosalicylic acid and Cu alloy. Time and temperature of passivating treatment have important effects on corrosion resistance of the passivation film; prolonged treatment time and high treatment temperature are beneficial to improving corrosion resistance of the passivation film.
Key words:  Cu-Ni alloy      passivation      sulphide      corrosion resistance     
Received:  13 January 2012     
ZTFLH: 

TG174.42

 
Fund: 

Fundamental Research Funds for the Central Universities

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00032     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/744

[1] Zhang J, Wang Q, Wang Y M, Dong C.  Acta Metall Sin,2009; 45: 1390

    (张杰, 王清, 王英敏, 董闯. 金属学报, 2009; 45: 1390)

[2] Kear G, Barker B D, Stokes K, Walsh F C.  J Appl Electrochem,2004; 34: 659

[3] Stewart W C, LaQue F L.  Corrosion, 1952; 8: 259

[4] Macdonald D D, Syrett B C, Wing S S.  Corrosion, 1979; 35: 367

[5] Eiselstein L E, Syrett B C, Wing S S, Caligiuri R D.  Corros Sci,1983; 23: 223

[6] Syrett B C.  Corros Sci, 1985; 25: 1193

[7] Kharafi F M, Abdullah A M, Ghayad I M, Ateya B G.  Appl Surf Sci,2007; 253: 8986

[8] Syrett B C.  Corros Sci, 1981; 21: 187

[9] Wan Z Y, Zhang L, Yin R H, Xu Q J, Chen H, Zhu L J, Zhou G D. Acta Metall Sin, 2008; 44: 203

    (万宗跃, 张利, 印仁和, 徐群杰, 陈浩, 朱律均, 周国定. 金属学报, 2008; 44: 203)

[10] Kosec T, Milosev I, Pihlar B.  Appl Surf Sci, 2007; 253: 8863

[11] Kosec T, Merl D K, Milosev I.  Corros Sci, 2008; 50: 1987

[12] Qafsaoui W, Blanc C, Pebere N, Takenouti H, Srhiri A, Mankowski G. Electrochim Acta, 2002; 47: 4339

[13] Finsgar M, Milosev I.  Corros Sci, 2010; 52: 2737

[14] Finsgar M, Lesar A, Kokalj A, Milosev I. Electrochim Acta, 2008; 53: 8287

[15] Gopi D, Govindaraju K M, Collins Arun Prakash V, Angeline Sakila D M,Kavitha L.  Corros Sci, 2009; 51: 2259

[16] Khiati Z, Othman A A, Sanchez--Moreno M, Bernard M C, Joiret S,Sutter E M M, Vivier V.  Corros Sci, 2011; 53: 3092

[17] Antonijevic M M, Milic S M.  Mater Chem Phys, 2009; 118: 385

[18] Mansfeld F, Smith T.  Corrosion, 1973; 29: 105

[19] Mamas S, KIyak T, Kabasakaloglu M, Koc A.  Mater Chem Phys,2005; 93: 41

[20] Maciel M J, Jaimes R F V V, Corio P, Rubim J C, Volpe P L, Neto A A,Agostinho S M L.  Corros Sci, 2008; 50: 879

[21] Fox P G, Lewis G, Boden P J.  Corros Sci, 1979; 19: 457

[22] Poling G W.  Corros Sci, 1970; 10: 359

[23] Chen J H, Lin Z C, Chen S, Nie L H, Yao S Z.  Electrochim Acta,1998; 43: 265

[24] Antonijevic M M, Milic S M, Serbula S M, Bogdanovic G D. Electrochim Acta, 2005; 50: 3693

[25] Han W A, Zou F.  Acta Metall Sin, 1993; 29: B148

     (韩文安, 邹锋. 金属学报, 1993; 29: B148)
 
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[3] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[4] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[5] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[6] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[7] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[8] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[9] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[10] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[11] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[12] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[13] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
[14] Lining XU,Jinyang ZHU,Bei WANG. Influence of Cr Content and pH Value on the Semi-Passivation Behavior of Low Cr Pipeline Steels[J]. 金属学报, 2017, 53(6): 677-683.
[15] Yao WANG,Chunfu LI,Yuanhua LIN. Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy[J]. 金属学报, 2017, 53(5): 622-630.
No Suggested Reading articles found!