Research Progress of Materials Design for Metal Laser Additive Manufacturing
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng()
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article:
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, HU Kai, FANG Ruxuan, JIANG Xin, ZHANG Xinru, WU Zusheng, SHI Yusheng. Research Progress of Materials Design for Metal Laser Additive Manufacturing. Acta Metall Sin, 2023, 59(1): 1-15.
Laser additive manufacturing is widely recognized to be an effective method to form complicated and custom metallic components. The existing research on metal additive manufacturing utilizes traditional alloy grades, which are designed based on the assumption that solidification occurs at equilibrium; thus, these materials are not well suited to the nonequilibrium metallurgical dynamics that are present in additive manufacturing techniques. Common issues, such as high crack susceptibility, low toughness, and low fatigue capability, as well as anisotropy, frequently occur during the fabrication of additively manufactured metallic parts. It is therefore necessary to conduct research on the design of new materials designed specifically for laser additive manufacturing in order to fully realize the potential advantages and value of the ultrafast solidification conditions. In this article, the technical bottlenecks, material design methods, and the development of new materials that are applicable to laser additively manufactured metal materials are reviewed; these materials include aluminum alloys, titanium alloys, iron-based alloys, and magnesium alloys. Finally, the potential future direction of research related to laser metal additive manufacturing is discussed.
Fund: National Natural Science Foundation of China(51922044);China Postdoctoral Science Foundation Funded Project(2021M701293);China Postdoctoral Science Foundation Funded Project(2021M690061)
About author: SHI Yusheng, professor, Tel: (027)87558155, E-mail: shiyusheng@hust.edu.cn
Fig.2 Thermodynamic calculation of phase diagram (a), crack susceptibility factor (fsis fraction solid) (b), and growth inhibition factor (Qtrue) (c), inverse pole figures (IPFs) of Al alloys before (d) and after (e) Ti modification, grain size distributions and average grain sizes (f) of Ti-modified 2xxx Al alloys[17]
Fig.3 Tensile properties of SLM-fabricated Ti alloys (a) Ti-6Al-4V alloy[27] (b) Ti-Cu alloys[28]
Fig.4 Schematics of the microstructure evolution of (TiB + TiC)/Ti composites[33]
Fig.5 Fe19Ni5Ti samples prepared by LCD and tensile tests [38] (a) schematic of section temperature during forming (Ms—martensite start temperature) (b) OM image of sample (c) hierarchical structures of microstructure characteristics under different length scales (d) tensile curves of two kinds of Fe19Ni5Ti (mass fraction, %) steel samples (Insets are the light microscope diagrams of two kinds of samples)
Fig.6 Microstructures and corrosion properties of SLM-fabricated stainless steel and Fe-based amorphous/stainless steel (a, b) microstructures before (a) and after (b) polishing[39] (Inset in Fig.6a is the energy spectrum of point 1, and the insets in Fig.6b are the surface energy spectrum and elements distribution) (c, d) IPFs before (c) and after (d) modification[40] (e, f) comparisons of potentiostatic polarization test[40] (I—corrosion current; T1, T2—start time of pitting corrosion; K1, K2—initial slope of the curve; SS—stainless steel)
Fig.7 Schematics of surface oxide formation[76] (a) dense Cr2O3 layer (b) Cr poor area (c) Ni(Fe, Cr)2O4 layer (d) serious peeling of oxide layer
Fig.8 Solidification path (a) and crack sensitivity index (b) of NbMoTaX alloy[88] (T—temperature)
Fig.9 Schematic of continuous cooling transformation (CCT) curve of amorphous alloy (a) and Fe-based amorphous structure (b)[101] (Rc—critical cooling rate, Rcryst—crystallization cooling rate, RSLM—SLM cooling rate, TPF—thermoplastic forming, tp—maximum time to supercooled liquid region, t—available time window of the heating step, TL—liquidus temperature, Tg—glass transition temperature)
Fig.10 Mechanical properties of SLM-fabricated Fe based amorphous composites[102] (BMG—bulk metallic glasses, KJ—fracture toughness)
1
Shi Y S. The industrial application and industrialization development of 3D printing technology [J]. Mach. Des. Manuf. Eng., 2016, 45(2): 11
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends [J]. J. Mater. Sci. Technol., 2019, 35: 270
doi: 10.1016/j.jmst.2018.09.004
7
Li W, Liu J, Zhou Y, et al. Effect of substrate preheating on the texture, phase and nanohardness of a Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J]. Scr. Mater., 2016, 118: 13
doi: 10.1016/j.scriptamat.2016.02.022
8
Jia Q B, Du D D. Selective laser melting additive manufacturing of Inconel 718 superalloy parts: Densification, microstructure and properties [J]. J. Alloys Compd., 2014, 585: 713-721
doi: 10.1016/j.jallcom.2013.09.171
9
Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing [J]. Aeronaut. Manuf. Technol., 2016, (12): 26
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
11
Zhang J L, Yuan W H, Song B, et al. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys [J]. Adv. Powder Mater., 2022, 1: 100035
12
Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys [J]. Nature, 2017, 549: 365
doi: 10.1038/nature23894
13
Zhang H, Zhu H H, Nie X J, et al. Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scr. Mater., 2017, 134: 6
doi: 10.1016/j.scriptamat.2017.02.036
14
Nie X J, Zhang H, Zhu H H, et al. Effect of Zr content on formability, microstructure and mechanical properties of selective laser melted Zr modified Al-4.24Cu-1.97Mg-0.56Mn alloys [J]. J. Alloys Compd., 2018, 764: 977
doi: 10.1016/j.jallcom.2018.06.032
15
Li R D, Wang M B, Li Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: Crack-inhibiting and multiple strengthening mechanisms [J]. Acta Mater., 2020, 193: 83
doi: 10.1016/j.actamat.2020.03.060
16
Jia Q B, Rometsch P, Kürnsteiner P, et al. Selective laser melting of a high strength Al-Mn-Sc alloy: Alloy design and strengthening mechanisms [J]. Acta Mater., 2019, 171: 108
doi: 10.1016/j.actamat.2019.04.014
17
Zhang J L, Gao J B, Song B, et al. A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting [J]. Addit. Manuf., 2021, 38: 101829
18
Gu D D, Wang H Q, Dai D H, et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting [J]. Scr. Mater., 2015, 96: 25
doi: 10.1016/j.scriptamat.2014.10.011
19
Gu D D, Rao X W, Dai D H, et al. Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: Processing optimization, microstructure evolution and mechanical properties [J]. Addit. Manuf., 2019, 29: 100801
20
Wang M, Song B, Wei Q S, et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting [J]. J. Alloys Compd., 2019, 810: 151926
doi: 10.1016/j.jallcom.2019.151926
21
Tan H, Hao D P, Al-Hamdani K, et al. Direct metal deposition of TiB2/AlSi10Mg composites using satellited powders [J]. Mater. Lett., 2018, 214: 123
doi: 10.1016/j.matlet.2017.11.121
22
Li X P, Ji G, Chen Z, et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility [J]. Acta Mater., 2017, 129: 183
doi: 10.1016/j.actamat.2017.02.062
23
Gao C F, Xiao Z Y, Liu Z Q, et al. Selective laser melting of nano-TiN modified AlSi10Mg composite powder with low laser reflectivity [J]. Mater. Lett., 2019, 236: 362
doi: 10.1016/j.matlet.2018.10.126
24
Gao C, Wang Z, Xiao Z, et al. Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties [J]. J. Mater. Process. Technol., 2020, 281: 116618
doi: 10.1016/j.jmatprotec.2020.116618
25
Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
26
Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting [J]. Rapid Prototyp. J., 2005, 11: 26
doi: 10.1108/13552540510573365
27
Shipley H, McDonnell D, Culleton M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review [J]. Int. J. Mach. Tools Manuf., 2018, 128: 1
doi: 10.1016/j.ijmachtools.2018.01.003
28
Zhang D Y, Qiu D, Gibson M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys [J]. Nature, 2019, 576: 91
doi: 10.1038/s41586-019-1783-1
29
Zhang J L, Song B, Cai C, et al. Tailorable microstructure and mechanical properties of selective laser melted TiB/Ti-6Al-4V composite by heat treatment [J]. Adv. Powder Mater., 2022, 1: 100010
30
Attar H, Bönisch M, Calin M, et al. Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure and mechanical properties [J]. Acta Mater., 2014, 76: 13
doi: 10.1016/j.actamat.2014.05.022
31
Zhang J L, Song B, Yang L, et al. Microstructure evolution and mechanical properties of TiB/Ti6Al4V gradient-material lattice structure fabricated by laser powder bed fusion [J]. Composites, 2020, 202B: 108417
32
Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulk nanocomposites: Influence of nanoscale reinforcement [J]. Scr. Mater., 2012, 67: 185
doi: 10.1016/j.scriptamat.2012.04.013
33
Han C J, Babicheva R, Chua J D Q, et al. Microstructure and mechanical properties of (TiB + TiC)/Ti composites fabricated in situ via selective laser melting of Ti and B4C powders [J]. Addit. Manuf., 2020, 36: 101466
34
Zhang W X. Research on the key technologies for selective laser melting process [D]. Wuhan: Huazhong University of Science and Technology, 2008
章文献. 选择性激光熔化快速成形关键技术研究 [D]. 武汉: 华中科技大学, 2008
35
Zhang S. Research on the forming processes and properties in selective laser melting of medical alloy powders [D]. Wuhan: Huazhong University of Science and Technology, 2014
张 升. 医用合金粉末激光选区熔化成形工艺与性能研究 [D]. 武汉: 华中科技大学, 2014
36
Zhao X. Fundamental research on the microstructure and properties evolution of tool steels fabricated by seletive laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2016
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
38
Kürnsteiner P, Wilms M B, Weisheit A, et al. High-strength Damascus steel by additive manufacturing [J]. Nature, 2020, 582: 515
doi: 10.1038/s41586-020-2409-3
39
Zhang Y J, Zhang J L, Yan Q, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance [J]. Scr. Mater., 2018, 148: 20
doi: 10.1016/j.scriptamat.2018.01.016
40
Zhang Y J, Song B, Ming J, et al. Corrosion mechanism of amorphous alloy strengthened stainless steel composite fabricated by selective laser melting [J]. Corros. Sci., 2020, 163: 108241
doi: 10.1016/j.corsci.2019.108241
41
Grzesiak D, AlMangour B, Krawczyk M, et al. Selective laser melting of TiC reinforced stainless steel nanocomposites: Mechanical behaviour at elevated temperatures [J]. Mater. Lett., 2019, 256: 126633
doi: 10.1016/j.matlet.2019.126633
42
Liu Y F, Tang M K, Hu Q, et al. Densification behavior, microstructural evolution, and mechanical properties of TiC/AISI420 stainless steel composites fabricated by selective laser melting [J]. Mater. Des., 2019, 187: 108381
doi: 10.1016/j.matdes.2019.108381
43
Zhao S M, Shen X F, Yang J L, et al. Densification behavior and mechanical properties of nanocrystalline TiC reinforced 316L stainless steel composite parts fabricated by selective laser melting [J]. Opt. Laser Technol., 2018, 103: 239
doi: 10.1016/j.optlastec.2018.01.005
44
Zhao X, Wei Q S, Gao N, et al. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing [J]. J. Mater. Process. Technol., 2019, 270: 8
doi: 10.1016/j.jmatprotec.2019.01.028
45
Salman O O, Gammer C, Eckert J, et al. Selective laser melting of 316L stainless steel: Influence of TiB2 addition on microstructure and mechanical properties [J]. Mater. Today Commun., 2019, 21: 100615
46
Hu H, Wen S F, Duan L C, et al. Enhanced corrosion behavior of selective laser melting S136 mould steel reinforced with nano-TiB2 [J]. Opt. Laser Technol., 2019, 119: 105588
doi: 10.1016/j.optlastec.2019.105588
47
Wen S F, Hu H, Zhou Y, et al. Enhanced hardness and wear property of S136 mould steel with nano-TiB2 composites fabricated by selective laser melting method [J]. Appl. Surf. Sci., 2018, 457: 11
doi: 10.1016/j.apsusc.2018.06.220
48
Song B, Dong S J, Coddet C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC [J]. Scr. Mater., 2014, 75: 90
doi: 10.1016/j.scriptamat.2013.11.031
49
Wu C L, Zhang S, Zhang C H, et al. Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316L stainless steel matrix composites by laser melting deposition [J]. Opt. Laser Technol., 2019, 115: 134
doi: 10.1016/j.optlastec.2019.02.029
50
Song B, Wang Z W, Yan Q, et al. Integral method of preparation and fabrication of metal matrix composite: Selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites [J]. Mater. Sci. Eng., 2017, A707: 478
51
Wen S F, Chen K Y, Li W, et al. Selective laser melting of reduced graphene oxide/S136 metal matrix composites with tailored microstructures and mechanical properties [J]. Mater. Des., 2019, 175: 107811
doi: 10.1016/j.matdes.2019.107811
52
Zhou Y, Gui Q Y, Yu W Y, et al. Interfacial diffusion printing: An efficient manufacturing technique for artificial tubular grafts [J]. ACS Biomater. Sci. Eng., 2019, 5: 6311
doi: 10.1021/acsbiomaterials.9b01293
53
Taltavull C, Shi Z, Torres B, et al. Influence of the chloride ion concentration on the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank's solution [J]. J. Mater. Sci. Mater. Med., 2014, 25: 329
doi: 10.1007/s10856-013-5087-y
54
Zhang W N, Wang L Z, Feng Z X, et al. Research progress on selective laser melting (SLM) of magnesium alloys: A review [J]. Optik, 2020, 207: 163842
doi: 10.1016/j.ijleo.2019.163842
55
Gunduz K O, Oter Z C, Tarakci M, et al. Plasma electrolytic oxidation of binary Mg-Al and Mg-Zn alloys [J]. Surf. Coat. Technol., 2017, 323: 72
doi: 10.1016/j.surfcoat.2016.08.040
56
Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
57
Lee S J, Do L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy [J]. Surf. Coat. Technol., 2016, 307: 781
doi: 10.1016/j.surfcoat.2016.10.008
58
Shuai C J, He C X, Feng P, et al. Biodegradation mechanisms of selective laser-melted Mg-xAl-Zn alloy: Grain size and intermetallic phase [J]. Virtual Phys. Prototy., 2018, 13: 59
doi: 10.1080/17452759.2017.1408918
59
Zhou M R, Morisada Y, Fujii H. Effect of Ca addition on the microstructure and the mechanical properties of asymmetric double-sided friction stir welded AZ61 magnesium alloy [J]. J. Magnes. Alloy., 2020, 8: 91
doi: 10.1016/j.jma.2020.02.001
60
Yang J, Peng J, Nyberg E A, et al. Effect of Ca addition on the corrosion behavior of Mg-Al-Mn alloy [J]. Appl. Surf. Sci., 2016, 369: 92
doi: 10.1016/j.apsusc.2016.01.283
61
Baek S M, Kang J S, Shin H J, et al. Role of alloyed Y in improving the corrosion resistance of extruded Mg-Al-Ca-based alloy [J]. Corros. Sci., 2017, 118: 227
doi: 10.1016/j.corsci.2017.01.022
62
Shuai C J, He C X, Xu L, et al. Wrapping effect of secondary phases on the grains: Increased corrosion resistance of Mg-Al alloys [J]. Virtual Phys. Prototy., 2018, 13: 292
doi: 10.1080/17452759.2018.1479969
63
Zhang M, Chen C J, Liu C, et al. Study on porous Mg-Zn-Zr ZK61 alloys produced by laser additive manufacturing [J]. Metals, 2018, 8: 635
doi: 10.3390/met8080635
64
Long T, Zhang X H, Huang Q L, et al. Novel Mg-based alloys by selective laser melting for biomedical applications: Microstructure evolution, microhardness and in vitro degradation behaviour [J]. Virtual Phys. Prototy., 2018, 13: 71
doi: 10.1080/17452759.2017.1411662
65
Haberland C, Elahinia M, Walker J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J]. Smart Mater. Struct., 2014, 23: 104002
doi: 10.1088/0964-1726/23/10/104002
66
Haberland C, Meier H, Frenzel J. On the properties of Ni-rich NiTi shape memory parts produced by selective laser melting [A]. ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems [C]. Stone Mountain, GA, USA: American Society of Mechanical Engineers, 2012: 97
67
Hamilton R F, Palmer T A, Bimber B A. Spatial characterization of the thermal-induced phase transformation throughout as-deposited additive manufactured NiTi bulk builds [J]. Scr. Mater., 2015, 101: 56
doi: 10.1016/j.scriptamat.2015.01.018
68
Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous nickel-titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, C33: 419
69
Tan C L, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations [J]. Int. J. Mach. Tools Manuf., 2019, 141: 19
doi: 10.1016/j.ijmachtools.2019.04.002
70
Xue L, Atli K C, Picak S, et al. Controlling martensitic transformation characteristics in defect-free NiTi shape memory alloys fabricated using laser powder bed fusion and a process optimization framework [J]. Acta Mater., 2021, 215: 117017
doi: 10.1016/j.actamat.2021.117017
71
Zhang Q Q, Hao S J, Liu Y T, et al. The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability [J]. Appl. Mater. Today, 2020, 19: 100547
72
Lu B W, Cui X F, Ma W Y, et al. Promoting the heterogeneous nucleation and the functional properties of directed energy deposited NiTi alloy by addition of La2O3 [J]. Addit. Manuf., 2020, 33: 101150
73
Li S. Fundamental research on the microstructure and properties evolution of nickel-based superalloy fabricated by selective laser melting [D]. Wuhan: Huazhong University of Science and Technology, 2017
Kakehi K, Banoth S, Kuo Y L, et al. Effect of yttrium addition on creep properties of a Ni-base superalloy built up by selective laser melting [J]. Scr. Mater., 2020, 183: 71
doi: 10.1016/j.scriptamat.2020.03.014
75
Wang H L. Effect of element Re and W on microstructure and properties of selective laser melting GH4169 nickel-based alloy powder [D]. Taiyuan: North University of China, 2015
Chen L, Sun Y Z, Li L, et al. Effect of heat treatment on the microstructure and high temperature oxidation behavior of TiC/Inconel 625 nanocomposites fabricated by selective laser melting [J]. Corros. Sci., 2020, 169: 108606
doi: 10.1016/j.corsci.2020.108606
77
Li X F, Yi D H, Liu B, et al. Graphene-strengthened Inconel 625 alloy fabricated by selective laser melting [J]. Mater. Sci. Eng., 2020, A798: 140099
78
Zhang B C, Bi G J, Nai S, et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting [J]. Opt. Laser Technol., 2016, 80: 186
doi: 10.1016/j.optlastec.2016.01.010
79
Wang W Q, Wang S Y, Chen F, et al. Microstructure and mechanical properties of TiN/Inconel 718 composites fabricated by selective laser melting [J]. Acta. Metall. Sin., 2021, 57: 1017
doi: 10.11900/0412.1961.2020.00485
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
81
Cantor B., Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
82
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
doi: 10.1016/j.actamat.2013.04.058
83
Huo W Y, Liu X D, Tan S Y, et al. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films [J]. Appl. Surf. Sci., 2018, 439: 222
doi: 10.1016/j.apsusc.2018.01.050
84
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
85
Li R D, Niu P D, Yuan T C, et al. Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property [J]. J. Alloys Compd., 2018, 746: 125
doi: 10.1016/j.jallcom.2018.02.298
86
Fujieda T, Chen M C, Shiratori H, et al. Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting [J]. Addit. Manuf., 2019, 25: 412
87
Karlsson D, Marshal A, Johansson F, et al. Elemental segregation in an AlCoCrFeNi high-entropy alloy—A comparison between selective laser melting and induction melting [J]. J. Alloys Compd., 2019, 784: 195
doi: 10.1016/j.jallcom.2018.12.267
88
Zhang H, Zhao Y Z, Cai J L, et al. High-strength NbMoTaX refractory high-entropy alloy with low stacking fault energy eutectic phase via laser additive manufacturing [J]. Mater. Des., 2021, 201: 109462
doi: 10.1016/j.matdes.2021.109462
89
Sun Z J, Tan X P, Wang C C, et al. Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: Example of an Al x CoCrFeNi high-entropy alloy [J]. Acta Mater., 2021, 204: 116505
doi: 10.1016/j.actamat.2020.116505
90
Luo S C, Gao P, Yu H C, et al. Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior [J]. J. Alloys Compd., 2019, 771: 387
doi: 10.1016/j.jallcom.2018.08.290
91
Luo S C, Zhao C Y, Su Y, et al. Selective laser melting of dual phase AlCrCuFeNi x high entropy alloys: Formability, heterogeneous microstructures and deformation mechanisms [J]. Addit. Manuf., 2020, 31: 100925
92
Wang Y, Li R D, Niu P D, et al. Microstructures and properties of equimolar AlCoCrCuFeNi high-entropy alloy additively manufactured by selective laser melting [J]. Intermetallics, 2020, 120: 106746
doi: 10.1016/j.intermet.2020.106746
93
Zhang M N, Zhou X L, Wang D F, et al. AlCoCuFeNi high-entropy alloy with tailored microstructure and outstanding compressive properties fabricated via selective laser melting with heat treatment [J]. Mater. Sci. Eng., 2019, A743: 773
94
Yao H L, Tan Z, He D Y, et al. High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting [J]. J. Alloys Compd., 2020, 813: 152196
doi: 10.1016/j.jallcom.2019.152196
95
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
96
Yang X G, Zhou Y, Xi S Q, et al. Grain-anisotropied high-strength Ni6Cr4WFe9Ti high entropy alloys withoutstanding tensile ductility [J]. Mater. Sci. Eng., 2019, A767: 138382
97
Yang X G, Zhou Y, Xi S Q, et al. Additively manufactured fine grained Ni6Cr4WFe9Ti high entropy alloys with high strength and ductility [J]. Mater. Sci. Eng., 2019, A767: 138394
98
Li B, Qian B, Xu Y, et al. Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing [J]. Mater. Lett., 2019, 252: 88
doi: 10.1016/j.matlet.2019.05.108
99
Li B, Zhang L, Xu Y, et al. Selective laser melting of CoCrFeNiMn high entropy alloy powder modified with nano-TiN particles for additive manufacturing and strength enhancement: Process, particle behavior and effects [J]. Powd. Technol., 2020, 360: 509
doi: 10.1016/j.powtec.2019.10.068
100
Kim Y K, Kim M C, Lee K A. 1.45 GPa ultrastrong cryogenic strength with superior impact toughness in the in-situ nano oxide reinforced CrMnFeCoNi high-entropy alloy matrix nanocomposite manufactured by laser powder bed fusion [J]. J. Mater. Sci. Technol., 2022, 97: 10
doi: 10.1016/j.jmst.2021.04.030
Li N, Zhang J J, Xing W, et al. 3D printing of Fe-based bulk metallic glass composites with combined high strength and fracture toughness [J]. Mater. Des., 2018, 143: 285
doi: 10.1016/j.matdes.2018.01.061
103
Gao X H, Lin X, Yu J, et al. Selective laser melting (SLM) of in-situ beta phase reinforced Ti/Zr-based bulk metallic glass matrix composite [J]. Scr. Mater., 2019, 171: 21
doi: 10.1016/j.scriptamat.2019.06.007