Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (12): 1611-1622    DOI: 10.11900/0412.1961.2021.00574
Research paper Current Issue | Archive | Adv Search |
Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments
LIN Xiaodong1, MA Haibin2(), REN Qisen2, SUN Rongrong1, ZHANG Wenhuai1, HU Lijuan1, LIANG Xue3, LI Yifeng1, YAO Meiyi1()
1.Institute of Materials, Shanghai University, Shanghai 200072, China
2.Nuclear Fuel and Materials Department, China Nuclear Power Technology Research Institute, Shenzhen 518026, China
3.Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
Cite this article: 

LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments. Acta Metall Sin, 2022, 58(12): 1611-1622.

Download:  HTML  PDF(4211KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

FeCrAl alloys are promising candidate materials for accident-tolerant-fuel (ATF) claddings owing to their good high-temperature mechanical property, irradiation-swelling resistance, and high-temperature steam-oxidation performance. However, excellent corrosion resistance is also required in high-temperature high-pressure water environments when the alloys are used as ATF claddings. Therefore, in this work, the corrosion behavior of a Fe13Cr5Al4Mo alloy in 360oC, 18.6 MPa deionized water and 360oC, 18.6 MPa, 3.5 mg/L Li + 1000 mg/L B aqueous solution was studied. Results revealed that the weight gain and growth rate of the Fe13Cr5Al4Mo alloy were lower than that of the reference zirconium alloy, indicating a better corrosion property of the Fe13Cr5Al4Mo alloy. Moreover, an oxide film comprising Fe(Cr, Al)2O4 nanospinels formed on the Fe13Cr5Al4Mo alloy in both water environments, and Fe3O4 outer-oxide particles were observed in deionized water. The good corrosion performance of Fe13Cr5Al4Mo alloy was attributed to the compact spinel-oxide film, which could inhibit the diffusion of oxygen ions and metal cations. Adding Li + B into water changed the corrosion weight gain and oxide-film thickness of the Fe13Cr5Al4Mo alloy and impeded the formation of outer-oxide particles, which may be related to the high pH of alkaline Li + B aqueous solution and the interactions between Li+ and B3+.

Key words:  FeCrAl alloy      high-temperature high-pressure water      corrosion      oxide film      microstructure     
Received:  22 December 2021     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(51871141)
About author:  YAO Meiyi, professor, Tel: (021)56338586, E-mail: yaomeiyi@shu.edu.cn
MA Haibin, Tel: (0755)88617459, E-mail: mahaibin@cgnpc.com.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00574     OR     https://www.ams.org.cn/EN/Y2022/V58/I12/1611

AlloyCrAlMoYFe
Nominal13540.02Bal.
Measured12.995.034.020.015Bal.
Table 1  Nominal and measured chemical compositions of Fe13Cr5Al4Mo alloy
Fig.1  Microstructures of Fe13Cr5Al4Mo alloy tube
(a) tube dimension and surface sampling position (b, c) surface metallographic images with small and large magnifications, respectively (d) tube dimension and cross-sectional sampling position (e, f) cross-sectional metallographic images with small and large magnifications, respectively (g) secondary electron (SE) image of surface morphology (h) TEM bright field (TEM-BF) image and selected aera electron diffraction (SAED) pattern (inset) of matrix
Fig.2  TEM-BF images of second phase particles (SPPs) 1-3 in Fe13Cr5Al4Mo alloy (a-c) and SAED patterns of SPPs 1-3 (d-f) (The chemical compositions of SPPs with an atomic fraction are listed in the corresponding TEM-BF images)
Fig.3  Weight gain curves of Fe13Cr5Al4Mo and Zr-4 alloys exposed to deionized water and Li + B aqueous solution
Fig.4  Surface morphologies of the oxide films formed on the Fe13Cr5Al4Mo alloy after exposure to deionized water (a-c) and Li + B aqueous solution (d-f) for 42 d (a, d), 100 d (b, e), and 250 d (c, f)
Fig.5  Cross-sectional morphologies of the oxide films formed on the Fe13Cr5Al4Mo alloy after exposure to deionized water (a-c) and Li + B aqueous solution (d-f) for 42 d (a, d), 100 d (b, e), and 250 d (c, f)
Water environment42 d100 d250 d
Deionized water0.52 ± 0.081.42 ± 0.801.46 ± 0.20
Li + B solution0.36 ± 0.121.11 ± 0.231.55 ± 0.75
Table 2  Oxide film thicknesses of Fe13Cr5Al4Mo alloy after exposure to 360oC, 18.6 MPa deionized water and 360oC, 18.6 MPa, 3.5 mg/L Li + 1000 mg/L B aqueous solution for different durations
Fig.6  XRD spectra of Fe13Cr5Al4Mo alloy after exposure to deionized water (a) and Li + B aqueous solution (b) for different durations
Fig.7  Cross-sectional microstructure, element mapping, SAED pattern, and fast Fourier transformation (FFT) result of the oxide film formed on the Fe13Cr5Al4Mo alloy following exposure to deionized water for 100 d
(a) high angle annular dark field image under scanning transmission electron microscopy mode (STEM-HAADF image)
(b) STEM-HAADF image and element mapping of the selected region in Fig.7a
(c) TEM-BF image (d) SAED pattern
(e) high resolution transmission electron microscopy (HRTEM) image of the oxide/matrix (O/M) interface
(f) FFT pattern of the oxide corresponding to the rectangle region in Fig.7e
Fig.8  Cross-sectional microstructure, element mapping, SAED pattern, and FFT result of the oxide film formed on the Fe13Cr5Al4Mo alloy following exposure to deionized water for 250 d
(a) bright field image under scanning transmission electron microscopy mode (STEM-BF image) and the corresponding element mapping
(b) TEM-BF image of oxide film (c) TEM-BF image of the O/M interface
(d) SAED pattern of oxide film (e) FFT pattern of outer oxide particle
Fig.9  Cross-sectional microstructure, element mapping, SAED pattern, and FFT result of the oxide film formed on the Fe13Cr5Al4Mo alloy following exposure to Li + B aqueous solution for 100 d
(a) STEM-HAADF image
(b) STEM-HAADF image and element mapping of the selected region in Fig.9a
(c) TEM-BF image
(d) SAED pattern
(e) HRTEM image of the O/M interface
(f) FFT pattern of the oxide corresponding to the rectangle region in Fig.9e
Fig.10  Cross-sectional microstructure, element mapping, and SAED pattern of the oxide film formed on the Fe13Cr5Al4Mo alloy following exposure to Li + B aqueous solution for 250 d
(a) STEM-BF image and the corresponding element mapping (b) TEM-BF image (c) SAED pattern
Fig.11  Schematics of corrosion process of the Fe13Cr5Al4Mo alloy in high-temperature high-pressure water environments
(a) initial corrosion stage
(b) stable corrosion stage in deionized water
(c) stable corrosion stage in Li + B aqueous solution
1 Charit I. Accident tolerant nuclear fuels and cladding materials [J]. JOM, 2018, 70: 173
doi: 10.1007/s11837-017-2701-3
2 Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
3 Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: Current status towards commercialization [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. New York: Springer, 2019: 1381
4 Huang X, Li X Y, Fang X D, et al. Research progress in FeCrAl alloys for accident-tolerant fuel cladding [J]. J. Mater. Eng., 2020, 48(3): 19
黄希, 李小燕, 方晓东 等. 容错事故燃料包壳用FeCrAl合金的研究进展 [J]. 材料工程, 2020, 48(3): 19
5 Tao X K, Huang Z G, Guo Q M, et al. Research progress of FeCrAl alloy for cladding material of new type of light water reactor [J]. Hot Work. Technol., 2018, 47(6): 23
陶小康, 黄重国, 郭青苗 等. 新型轻水反应堆包壳材料FeCrAl合金的研究进展 [J]. 热加工工艺, 2018, 47(6): 23
6 Zhang Y Y, Wang H, An X G, et al. Dynamic strain aging behavior of accident tolerance fuel cladding FeCrAl-based alloy for advanced nuclear energy [J]. J. Mater. Sci., 2021, 56: 8815
doi: 10.1007/s10853-021-05820-6
7 Opila E J, Myers D L. Alumina volatility in water vapor at elevated temperatures [J]. J. Am. Ceram. Soc., 2004, 87: 1701
doi: 10.1111/j.1551-2916.2004.01701.x
8 Pan D, Zhang R Q, Wang H, et al. Formation and stability of oxide layer in FeCrAl fuel cladding material under high-temperature steam [J]. J. Alloys Compd., 2016, 684: 549
doi: 10.1016/j.jallcom.2016.05.145
9 Park D J, Kim H G, Park J Y, et al. A study of the oxidation of FeCrAl alloy in pressurized water and high-temperature steam environment [J]. Corros. Sci., 2015, 94: 459
doi: 10.1016/j.corsci.2015.02.027
10 Parker S S, White J, Hosemann P, et al. Oxidation kinetics of ferritic alloys in high-temperature steam environments [J]. JOM, 2018, 70: 186
doi: 10.1007/s11837-017-2639-5
11 Pint B A. Performance of FeCrAl for accident-tolerant fuel cladding in high-temperature steam [J]. Corros. Rev., 2017, 35: 167
doi: 10.1515/corrrev-2016-0067
12 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
doi: 10.1007/BF01046725
13 Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
14 Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
15 Rebak R B, Larsen M, Kim Y J. Characterization of oxides formed on iron-chromium-aluminum alloy in simulated light water reactor environments [J]. Corros. Rev., 2017, 35: 177
doi: 10.1515/corrrev-2017-0011
16 Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
17 Song L J, Liu F H, Li C T, et al. Effect of B-Li water chemistry on corrosion of metal materials of nuclear power plant [J]. Nucl. Sci. Eng., 2014, 34: 97
宋利君, 刘飞华, 李成涛 等. B-Li水化学对核电站金属材料腐蚀的影响 [J]. 核科学与工程, 2014, 34: 97
18 Betova I, Bojinov M, Karastoyanov V, et al. Effect of water chemistry on the oxide film on alloy 690 during simulated hot functional testing of a pressurised water reactor [J]. Corros. Sci., 2012, 58: 20
doi: 10.1016/j.corsci.2012.01.002
19 Wei K J, Wang X P, Zhu M H, et al. Effects of Li, B and H elements on corrosion property of oxide films on ZIRLO alloy in 300oC/14 MPa lithium borate buffer solutions [J]. Corros. Sci., 2021, 181: 109216
20 Molander A, Norring K, Andersson P O, et al. Environmental effects on PWSCC initiation and propagation in alloy 600 [A]. Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. New York: Springer, 2011: 1699
21 Vankeerberghen M, Weyns G, Gavrilov S, et al. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions [J]. J. Nucl. Mater., 2009, 384: 274
doi: 10.1016/j.jnucmat.2008.11.034
22 Liu W Q, Zhou B X, Li Q, et al. Detrimental role of LiOH on the oxide film formed on zircaloy-4 [J]. Corros. Sci., 2005, 47: 1855
doi: 10.1016/j.corsci.2004.08.003
23 Billot P, Yagnik S, Ramasubramanian N, et al. The role of lithium and boron on the corrosion of zircaloy-4 under demanding PWR-type conditions [A]. Zirconium in the Nuclear Industry: 13th International Symposium [C]. West Conshohocken: American Society for Testing and Materials, 2002: 169
24 Zhao Y F, Tang M, Jiang E, et al. Inhibition effects of low concentration of boron on corrosion of zirconium alloy [J]. Nucl. Power Eng., 2019, 40(2): 32
赵永福, 唐敏, 姜峨 等. 低浓度硼对锆合金缓蚀作用研究 [J]. 核动力工程, 2019, 40(2): 32
25 Li J. The focused-ion-beam microscope—More than a precision ion milling machine [J]. JOM, 2006, 58(3): 27
26 Cao X Y, Zhu P, Wang W, et al. Effect of thermal aging on oxide film of stainless steel weld overlay cladding exposed to high temperature water [J]. Mater. Charact., 2018, 138: 195
doi: 10.1016/j.matchar.2018.02.010
27 Hanbury R D, Was G S. Oxide growth and dissolution on 316L stainless steel during irradiation in high temperature water [J]. Corros. Sci., 2019, 157: 305
doi: 10.1016/j.corsci.2019.06.006
28 Kuang W J, Han E H, Wu X Q, et al. Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water [J]. Corros. Sci., 2010, 52: 3654
doi: 10.1016/j.corsci.2010.07.015
29 Terachi T, Yamada T, Miyamoto T, et al. Corrosion behavior of stainless steels in simulated PWR primary water—Effect of chromium content in alloys and dissolved hydrogen [J]. J. Nucl. Sci. Technol., 2008, 45: 975
doi: 10.1080/18811248.2008.9711883
30 Lister D H, Davidson R D, Mcalpine E. The mechanism and kinetics of corrosion product release from stainless steel in lithiated high temperature water [J]. Corros. Sci., 1987, 27: 113
doi: 10.1016/0010-938X(87)90068-0
31 Macdonald D D, Urquidi-Macdonald M. Theory of steady-state passive films [J]. J. Electrochem. Soc., 1990, 137: 2395
doi: 10.1149/1.2086949
32 Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
33 Matthews R P, Knusten R D, Westraadt J E, et al. Intergranular oxidation of 316L stainless steel in the PWR primary water environment [J]. Corros. Sci., 2017, 125: 175
doi: 10.1016/j.corsci.2017.06.023
34 Macdonald D D. Passivity—The key to our metals-based civilization [J]. Pure Appl. Chem., 1999, 71: 951
doi: 10.1351/pac199971060951
35 Wu W S, Ran G, Li Y P, et al. Early corrosion behaviour of irradiated FeCrAl alloy in a simulated pressurized water reactor environment [J]. Corros. Sci., 2020, 174: 108824
36 Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
37 Robino C V. Representation of mixed reactive gases on free energy (Ellingham-Richardson) diagrams [J]. Metall. Mater. Trans., 1996, 27B: 65
38 Sun H, Wu X Q, Han E H, et al. Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water [J]. Corros. Sci., 2012, 59: 334
doi: 10.1016/j.corsci.2012.03.022
39 Shu M, Wang C L, Chen Y. Studies on electrochemical corrosion behaviors and 316NG stainless steel in boron-lithium solutions [J]. Nucl. Power Eng., 2018, 39(5): 63
舒茗, 王丛林, 陈勇. 316NG不锈钢在硼-锂溶液中的电化学腐蚀行为研究 [J]. 核动力工程, 2018, 39(5): 63
40 Kaczorowski D, Combrade P, Vernot J P, et al. Water chemistry effect on the wear of stainless steel in nuclear power plant [J]. Tribol. Int., 2006, 39: 1503
doi: 10.1016/j.triboint.2006.03.005
41 Park Y J, Choi K C, Ha Y K. Solubility study of nickel ferrite in boric acid using a flow-through autoclave system under high temperature and high pressure [J]. Nucl. Eng. Technol., 2016, 48: 554
doi: 10.1016/j.net.2016.01.001
42 Tremaine P R, Leblanc J C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300oC [J]. J. Solution Chem., 1980, 9: 415
doi: 10.1007/BF00645517
43 Cox B, Ungurelu M, Wong Y M, et al. Mechanisms of LiOH degradation and H3BO3 repair of ZrO2 films [A]. Zirconium in the Nuclear Industry: 11th International Symposium [C]. West Conshohocken: American Society for Testing and Materials, 1996: 114
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[9] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[10] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[11] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[12] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!