Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (6): 760-770    DOI: 10.11900/0412.1961.2021.00017
Research paper Current Issue | Archive | Adv Search |
Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate
TIAN Ni1,2(), SHI Xu1, LIU Wei1, LIU Chuncheng3, ZHAO Gang1,2, ZUO Liang2,4
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
3.Engineering Training Center, Northeastern University, Shenyang 110819, China
4.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate. Acta Metall Sin, 2022, 58(6): 760-770.

Download:  HTML  PDF(3240KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

7N01 aluminum alloy is the main load-bearing structure material for bullet train bodies due to its high specific strength, high specific stiffness, good magnetic-shielding ability, strong corrosion resistance, and good formability and weldability. The fatigue performance of materials and components used in bullet trains determines their security. It is unavoidable that there is pre-deformation during the assembly process of aluminum alloy components, which will influence the active service and fatigue performance of the aluminum alloy. It is important not only to clarify the relationship between pre-deformation and fatigue performance but also to reveal the mechanism of pre-deformation on the fatigue fracture of 7N01 aluminum alloy, to ensure the security of the bullet train. In this study, the effect of pre-tensile deformation on the fatigue property, fatigue fracture initiation, and fatigue crack propagation characteristics of a commercial 7N01 aluminum alloy plate at under-aged conditions was studied using tensile and fatigue tests combined with microstructure analysis. As the pre-tensile deformation increased to 20%, the results showed that the shape, size, number, distribution of second phase particles, as well as the size and morphology of thin strips grain of under-aged 7N01 aluminum alloy plate were almost the same. However, the under-aged 7N01 aluminum alloy plate has a significant strain-hardening effect after pre-tensile at room temperature, with the yield strength, tensile strength, and hardness increased from 181 MPa, 233 MPa, and 95 HV (without pre-tensile deformation) to 254 MPa, 271 MPa, and 117 HV (after 20% pre-tensile deformation), while the elongation decreased from 23.2% to 5.2%. Under the 175 MPa pulsating tensile load condition (stress ratio R = 0), the overall fatigue life of the under-aged 7N01 aluminum alloy plate first reduced, then prolonged, and then decreased as pre-tensile deformation increased. Without pre-tensile deformation, the fatigue life of under-aged 7N01 aluminum alloy plate is about 6.06 × 105 cyc, and when prolonged by about 75%, it reaches about 1.06 × 106 cyc after 5% pre-tensile deformation. However, the fatigue life of the under-aged 7N01 aluminum alloy plate is decreased to 4.21 × 105 and 2.89 × 105 cyc after 3% and 20% pre-tensile deformation, respectively. The evenly distributed high-density dislocations or dislocation cells resulted in 5%-16% pre-tensile deformation in the under-aged 7N01 aluminum alloy plate, which can prolong the fatigue life of the alloy plate by over 23%.

Key words:  7N01 aluminum alloy plate      pre-tensile deformation      under-aged      dislocation      fatigue     
Received:  14 January 2021     
ZTFLH:  TG146.2  
Fund: National Natural Science Foundation of China(51871043);Fundamental Research Funds for the Central Universities of China(180212010);Natural Science Foundation of Liaoning Province(2019-MS-113)
About author:  TIAN Ni, associate professor, Tel: (024)83671571, E-mail: tiann@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00017     OR     https://www.ams.org.cn/EN/Y2022/V58/I6/760

Fig.1  Specimen size for tensile and fatigue tests (unit: mm)
Fig.2  OM images of under-aged 7N01 aluminum alloy plate and after different pre-tensile deformations (along longitudinal section, non-etched)
(a) three-dimensional diagram, undeformed(b) undeformed (c) 3% (d) 5% (e) 8% (f) 12% (g) 16% (h) 20%
Fig.3  OM images of grains of under-aged 7N01 aluminum alloy plate and after different pre-tensile deformations (along longitudinal section) that were observed by polarized light microscope
(a) three-dimensional diagram, undeformed
(b) undeformed (c) 3% (d) 5% (e) 8% (f) 12% (g) 16% (h) 20%
Fig.4  TEM images of under-aged 7N01 aluminum alloy plate and after different pre-tensile deformations
(a) undeformed (b) 3% (c) 5% (d) 8% (e) 12% (f) 16% (g) 20%
Fig.5  Mechanical properties of under-aged 7N01 aluminum alloy plate after different pre-tensile deformations
(a) microhardness
(b) yield strength, tensile strength, and elongation
Fig.6  Fatigue life of under-aged 7N01 aluminum alloy plate after different pre-tensile deformations
Fig.7  SEM images of fatigue sources of under-aged 7N01 aluminum alloy plate after different pre-tensile deformations
(a) undeformed (b) 3% (c) 5% (d) 8% (e) 16% (f) 20%
Fig.8  SEM images of fatigue crack propagation of under-aged 7N01 aluminum alloy plate after different pre-tensile deformations
(a) undeformed (b) 3% (c) 5% (d) 8% (e) 16% (f) 20%
Term0%3%5%8%12%16%20%
λi+ + ++ ++ + + ++ + + ++ + + ++ + + + ++
λp+ ++ ++ + + + ++ + + ++ + +++
λ+ + + + ++ + + ++ + + + + + + + ++ + + + + + + ++ + + + + + ++ + + + + ++ +
Table 1  Contribution results of pre-tensile deformation on fatigue crack initiation resistance (λi), fatigue crack propagation resistance (λp), and fatigue life (λ) of under-aged 7N01 aluminum alloy plate after different pre-tensile deformations
Fig.9  Schematics of fatigue crack propagation of under-aged 7N01 aluminum alloy plate after different pre-tensile deformations
(a) undeformed (b) 3% (c) 5% (d) 8% (e) 12% (f) 16% (g) 20%
1 Deschamps A, Texier G, Ringeval S, et al. Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy [J]. Mater. Sci. Eng., 2009, A501: 133
2 Heinz A, Haszler A, Keidel C, et al. Recent development in aluminium alloys for aerospace applications [J]. Mater. Sci. Eng., 2000, A280: 102
3 Liu W H, Liu W B, Bao A L. Microstructure and properties of ceramic coatings on 7N01 aluminum alloy by micro-arc oxidation [J]. Procedia Eng., 2012, 27: 828
doi: 10.1016/j.proeng.2011.12.527
4 Branco R, Costa J D, Borrego L P, et al. Effect of tensile pre-strain on low-cycle fatigue behaviour of 7050-T6 aluminium alloy [J]. Eng. Fail. Anal., 2020, 114: 104592
doi: 10.1016/j.engfailanal.2020.104592
5 Branco R, Borrego L P, Costa J D, et al. Effect of pre-strain on cyclic plastic behaviour of 7050-T6 aluminium alloy [J]. Procedia Struct. Integr., 2019, 17: 177
doi: 10.1016/j.prostr.2019.08.024
6 Niendorf T, Lotze C, Canadinc D, et al. The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2009, A499: 518
7 Gustavsson A, Melander A. Fatigue of a highly prestrained dual-phase sheet steel [J]. Fatigue Fract. Eng. Mater. Struct., 1995, 18(2): 201
doi: 10.1111/j.1460-2695.1995.tb00155.x
8 Uemura T. A fatigue life estimation of specimens excessively prestrained in tension [J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 151
doi: 10.1046/j.1460-2695.1998.00223.x
9 Al-Rubaie K S, Del Grande M A, Travessa D N, et al. Effect of pre-strain on the fatigue life of 7050-T7451 aluminium alloy [J]. Mater. Sci. Eng., 2007, A464: 141
10 Schijve J. The effect of pre-strain on fatigue crack growth and crack closure [J]. Eng. Fract. Mech., 1976, 8: 575
doi: 10.1016/0013-7944(76)90031-X
11 Froustey C, Lataillade J L. Influence of large pre-straining of aluminium alloys on their residual fatigue resistance [J]. Int. J. Fatigue, 2008, 30(5): 908
doi: 10.1016/j.ijfatigue.2007.06.011
12 Arora P R, Raghavan M R. Effect of tensile prestrain on fatigue strength of aluminum alloy in high cycle fatigue [J]. J. Eng. Mater. Technol., 1973, 95: 76
doi: 10.1115/1.3443135
13 Hodgson P, Parker B A. The composition of insoluble intermetallic phases in aluminium alloy 6010 [J]. J. Mater. Sci., 1981, 16: 1343
doi: 10.1007/BF01033850
14 Adrien J, Maire E, Estevez R, et al. Influence of the thermomechanical treatment on the microplastic behaviour of a wrought Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52: 1653
doi: 10.1016/j.actamat.2003.12.009
15 Benoit S G, Chalivendra V B, Rice M A, et al. Characterization of the microstructure, fracture, and mechanical properties of aluminum alloys 7085-O and 7175-T7452 hollow cylinder extrusions [J]. Metall. Mater. Trans., 2016, 47A: 4476
16 Hou L G, Xiao W L, Su H, et al. Room-temperature low-cycle fatigue and fracture behaviour of asymmetrically rolled high-strength 7050 aluminium alloy plates [J]. Int. J. Fatigue, 2021, 142: 105919
doi: 10.1016/j.ijfatigue.2020.105919
17 Wen K, Fan Y Q, Wang G J, et al. Aging behavior and fatigue crack propagation of high Zn-containing Al-Zn-Mg-Cu alloys with zinc variation [J]. Prog. Nat. Sci., 2017, 27: 217
doi: 10.1016/j.pnsc.2017.02.002
18 Tian N, Zhao G, Zuo L, et al. Study on the strain hardening behavior of Al-Mg-Si-Cu alloy sheet for automotive body [J]. Acta. Metall. Sin., 2010, 46: 613
doi: 10.3724/SP.J.1037.2009.00799
田 妮, 赵 刚, 左 良 等. 汽车车身用Al-Mg-Si-Cu合金薄板应变强化行为的研究 [J]. 金属学报, 2010, 46: 613
19 Wang Z X, Li H, Wei X Y, et al. Effects of prior strain on static tensile properties and fatigue lives of 2E12 aluminum alloy [J]. Rare Met. Mater. Eng., 2010, 39(): 138
王芝秀, 李 海, 魏修宇 等. 预变形对2E12铝合金拉伸性能和疲劳寿命的影响 [J]. 稀有金属材料与工程, 2010, 39(): 138
20 Schijve J, translated by Wu X R, et al. Fatigue of Structures and Materials [M]. 2nd Ed., Beijing: Aviation Industry Press, 2014: 30
Schijve J著, 吴学仁等译 . 结构与材料的疲劳 [M]. 第2版, 北京: 航空工业出版社, 2014: 30
21 Wang X S, Liang F, Zeng Y P, et al. SEM in situ observations to the effects of inclusion on initiation and propagation of the low cyclic fatigue crack in super strength steel [J]. Acta. Metall. Sin, 2005, 41: 1272
王习术, 梁 锋, 曾燕屏, 等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测 [J]. 金属学报, 2005, 41(12): 1272
22 Bai S, Liu Z Y, Gu Y X, et al. Microstructures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with a low Cu/Mg ratio [J]. Mater. Sci. Eng., 2011, A530: 473
23 Xu L P, Wang Q Y, Zhou M. Micro-crack initiation and propagation in a high strength aluminum alloy during very high cycle fatigue [J]. Mater. Sci. Eng., 2018, A715: 404
24 Yao W X, Guo S J. Gigacycle fatigue life distribution of aluminum alloy LC4CS [J]. Acta. Metall. Sin., 2007, 43: 399
姚卫星, 郭盛杰. LC4CS铝合金的超高周疲劳寿命分布 [J]. 金属学报, 2007, 43: 399
25 Zang X C, Xie L Y, Hu J X, et al. Effect of service on fracture mechanical properties of 7N01 aluminum alloy [J]. J. Northeast. Univ. (Nat. Sci.), 2017, 38: 1442
张啸尘, 谢里阳, 胡杰鑫, 等. 服役经历对7N01铝合金断裂力学性能的影响 [J]. 东北大学学报(自然科学版), 2017, 38: 1442
26 Jian H G, Jiang F, Wei L L, et al. Crystallographic mechanism for crack propagation in the T7451 Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2010, A527: 5879
27 Nandana M S, Udaya Bhat K, Manjunatha C M. Influence of retrogression and re-ageing heat treatment on the fatigue crack growth behavior of 7010 aluminum alloy [J]. Procedia Struct. Integr., 2019, 14: 314
doi: 10.1016/j.prostr.2019.05.039
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[6] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[7] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[8] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[9] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[11] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[12] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[13] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[14] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[15] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
No Suggested Reading articles found!