Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (2): 247-256    DOI: 10.11900/0412.1961.2020.00381
Current Issue | Archive | Adv Search |
Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys
HOU Yubai1,2,3, YU Yueguang2(), GUO Zhimeng1
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.BGRIMM Technology Group, Beijing 100160, China
3.BGRIMM Advanced Materials Science & Technology Co. , Ltd. , Beijing 102206, China
Cite this article: 

HOU Yubai, YU Yueguang, GUO Zhimeng. Simulation Study of Smoothed Particle Hydrodynamics (SPH) Method in Plasma Spheroidization of W-Ni-Fe Ternary Alloys. Acta Metall Sin, 2021, 57(2): 247-256.

Download:  HTML  PDF(3191KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metal additive manufacturing three-dimensional printing technology is widely used in the manufacturing industry. This technology is an important scientific and technological achievement in the field of world-class manufacturing, and it has influenced and changed the ways of production, which has brought great changes in the manufacturing field. The plasma spheroidization process can provide a better rate of spheroidization for refractory metals. Smoothed particle hydrodynamics (SPH) is a mesh-less Lagrangian method to simulate a flow field and enable heat transfer. This method has shown great potential for replacing the traditional numerical methods and has been successfully used to simulate the collision and fusion process of metal droplets during plasma spheroidization. In this study, the SPH technique has been employed to simulate the collision and fusion processes of multiple metal droplets of a W-Ni-Fe ternary alloy in plasma spheroidization with the consideration of the effect of surface tension. The spheroidization process has been visualized with fluid evolution in terms of the flow field and temperature distribution. A high spheroidization quality is found in a system with the a high amount of tungsten, small tungsten particle size, high processing environment temperature, and large Marangoni force. To check the simulation results, spheroidization experiments have been conducted using the following raw materials: tungsten powder with an average particle size of 1.5 μm, nickel powder with an average particle size of 4.1 μm, and iron powder with an average particle size of 2.4 μm. The raw materials were mixed with a mass ratio of W∶Ni∶Fe=90∶7∶3 and then spheroidized at 8000oC. The achieved ternary alloy powder has high sphericity and dense internal structure. The flowability of the powders is 11.62 s/50 g. The apparent density is 10.66 g/cm3. The resulting products show high precision and good efficiency. The experiments confirm the consistency of SPH simulation. The simulation results can be used to guide development in the fabrication process of the spheroidized powder of refractory metals, such as tungsten.

Key words:  smoothed particle hydrodynamics (SPH)      metal droplet      fusion      plasma      spheroidization     
Received:  22 September 2020     
ZTFLH:  TG146.4  
Fund: National Key Research and Development Program of China(2017YFB0305800)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00381     OR     https://www.ams.org.cn/EN/Y2021/V57/I2/247

Fig.1  Schematic of smoothed particle hydrodynamics (SPH) model for W-Ni-Fe ternary alloy
ElementDensityViscosityThermal conductivitySurface tension coefficientSpecific heat capacity
103 kg·m-310-3 Pa·sW·m-1·K-1N·m-1J·kg-1·K-1
Fe7.86.440.02.04460
Ni8.96.090.73.10447
W19.36.591.32.50466
Table1  The physical property parameters of materials
ModelMass ratio of W∶Ni∶FeTemperatureDiameter of WMarangoni coefficient
oCμm
190∶7∶350003.05.8
285∶10.5∶4.5
380∶14∶6
490∶7∶350003.05.8
58000
610000
790∶7∶350002.55.8
83.0
93.5
1090∶7∶350003.00.058
110.58
125.8
Table 2  The parameters of different models
Fig.2  Simulation results under different collision conditions by using SPH
Fig.3  Simulation results for W-Ni-Fe ternary alloy after droplet fusion under different mass ratios of W∶Ni∶Fe (models 1-3)
Fig.4  Simulation results for W-Ni-Fe ternary alloy after droplet fusion under different temperatures (models 4-6)
Fig.5  Simulation results for W-Ni-Fe ternary alloy after droplet fusion under different diameters of W (models 7-9)
Fig.6  Simulation results for W-Ni-Fe ternary alloy after droplet fusion under different Marangoni coefficients (models 10-12)
ModelSpheroidization ratioCompactness
189.37%96.35%
285.64%80.08%
382.75%97.85%
481.34%96.85%
570.71%97.97%
690.34%98.58%
780.33%98.71%
889.37%96.35%
985.26%97.65%
1079.01%96.85%
1186.61%97.66%
1295.26%100.00%
Table 3  The merging data of W-Ni-Fe droplet fusion for different models
Fig.7  The spheroidization ratio and compactness curves obtained by an interpolation method
Fig.8  SEM images of W-Ni-Fe ternary alloy before (a) and after (b) spheroidization
Fig.9  SEM image and corresponding EDS analyses for W-Ni-Fe ternary alloy after spheroidization
1 Shuai S S, Lin X, Xiao W Q, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing [J]. Acta Metall. Sin., 2018, 54: 918
帅三三, 林 鑫, 肖武泉等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响 [J]. 金属学报, 2018, 54: 918
2 Zhang Y J, Wang H B, Song X Y, et al. Preparation and performance of spherical Ni powder for SLM processing [J]. Acta Metall. Sin., 2018, 54: 1833
张亚娟, 王海滨, 宋晓艳等. SLM球形Ni粉的制备与打印工艺性能 [J]. 金属学报, 2018, 54: 1833
3 Bárdos L, Baránková H. Plasma processes at atmospheric and low pressures [J]. Vacuum, 2008, 83: 522
4 Kobayashi A, Sharafat S, Ghoniem N M. Formation of tungsten coatings by gas tunnel type plasma spraying [J]. Surf. Coat. Technol., 2006, 200: 4630
5 Kumar S, Na H, Selvarajan V, et al. Influence of metal powder shape on drag coefficient in a spray jet [J]. Curr. Appl. Phys., 2009, 9: 678
6 Zhang T, Yan W, Xie Z M, et al. Recent progress of oxide/carbide dispersion strengthened W-based materials [J]. Acta Metall. Sin., 2018, 54: 831
张 涛, 严 玮, 谢卓明等. 碳化物/氧化物弥散强化钨基材料研究进展 [J]. 金属学报, 2018, 54: 831
7 Kumar S, Selvarajan V. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet [J]. Mater. Charact., 2008, 59: 781
8 Zhou H B, Li Y H, Lu G H. Modeling and simulation of hydrogen behavior in tungsten [J]. Acta Metall. Sin., 2018, 54: 301
周洪波, 李宇浩, 吕广宏. W中H行为的计算模拟研究 [J]. 金属学报, 2018, 54: 301
9 Nam J S, Park E, Seo J H. Numerical analysis of radio-frequency inductively coupled plasma spheroidization of titanium metal powder under single particle and dense loading conditions [J]. Met. Mater. Int., 2020, 26: 491
10 Bernardi D, Colombo V, Ghedini E, et al. 3-D numerical simulation of fully-coupled particle heating in ICPTs [J]. Eur. Phys. J., 2004, 28D: 423
11 Morris J P. Simulating surface tension with smoothed particle hydrodynamics [J]. Int. J. Numer. Meth. Fluids, 2000, 33: 333
12 Tong M M, Browne D J. An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow [J]. Int. J. Heat Mass Transf., 2014, 73: 284
13 Russell M A, Souto-Iglesias A, Zohdi T I. Numerical simulation of laser fusion additive manufacturing processes using the SPH method [J]. Comput. Methods Appl. Mech. Eng., 2018, 341: 163
14 Zhang M Y. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method [J]. J. Comput. Phys., 2010, 229: 7238
15 Olsson E, Kreiss G. A conservative level set method for two phase flow [J]. J. Comput. Phys., 2005, 210: 225
16 Monaghan J J. Smoothed particle hydrodynamics [J]. Rep. Prog. Phys., 2005, 68: 1703
17 Liu M B, Liu G R. Smoothed particle hydrodynamics (SPH): An overview and recent developments [J]. Arch. Comput. Methods Eng., 2010, 17: 25
18 Huang C, Long T, Li S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils [J]. Eng. Anal. Boundary Elem., 2019, 106: 571
19 Wang L, Xu F, Yang Y. SPH scheme for simulating the water entry of an elastomer [J]. Ocean Eng., 2019, 178: 233
20 Niu X F, Zhao J Y, Wang B J. Application of smooth particle hydrodynamics (SPH) method in gravity casting shrinkage cavity prediction [J]. Comput. Part. Mech., 2019, 6: 803
21 Liu G R, Liu M B. translated by Han X, Yang G, Qiang H F. Smoothed Particle Hydrodynamics: A Meshfree Particle Method [M]. Changsha: Hunan University Press, 2005: 39
Liu G R, Liu M B著, 韩 旭, 杨 刚, 强洪夫译. 光滑粒子流体动力学——一种无网格粒子法 [M]. 长沙: 湖南大学出版社, 2005: 39
22 Monaghan J J. Smoothed particle hydrodynamics [J]. Annu. Rev. Astron. Astrophys., 1992, 30: 543
23 Lind S J, Stansby P K, Rogers B D, et al. Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics [J]. Appl. Ocean Res., 2015, 49: 57
24 Lind S J, Stansby P K, Rogers B D. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH) [J]. J. Comput. Phys., 2016, 309: 129
25 Qiang H F, Liu H, Chen F Z, et al. Experimental Study on Atomization of Gel-Propellant and Numerical Simulation of SPH [M]. Beijing: Science Press, 2019: 115
强洪夫, 刘 虎, 陈福振等. 凝胶推进剂雾化的实验与SPH数值模拟研究 [M]. 北京: 科学出版社, 2019: 115
26 Qian J, Law C K. Regimes of coalescence and separation in droplet collision [J]. J. Fluid Mech., 1997, 331: 59
27 Qin S S, Yu Y, Zeng G Y, et al. Research on the preparation of metal powder for 3D printing [J]. Powder Metall. Ind., 2016, 26(5): 21
覃思思, 余 勇, 曾归余等. 3D打印用金属粉末的制备研究[J]. 粉末冶金工业, 2016, 26(5): 21
28 Liang Y R, Wu Y J. Production technology of titanium and its alloy spherical powders used in 3D printing [J]. World Nonferrous Met., 2016, (6): 150
梁永仁, 吴引江. 3D打印用钛及钛合金球形粉末制备技术 [J]. 世界有色金属, 2016, (6): 150
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LIU Wei, CHEN Wanqi, MA Menghan, LI Kailun. Review of Irradiation Damage Behavior of Tungsten Exposed to Plasma in Nuclear Fusion[J]. 金属学报, 2023, 59(8): 986-1000.
[3] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[8] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[9] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[10] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[11] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[12] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[13] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[14] PENG Wuqingliang, LI Qiang, CHANG Yongqin, WANG Wanjing, CHEN Zhen, XIE Chunyi, WANG Jichao, GENG Xiang, HUANG Lingming, ZHOU Haishan, LUO Guangnan. A Review on the Development of the Heat Sink of the Fusion Reactor Divertor[J]. 金属学报, 2021, 57(7): 831-844.
[15] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
No Suggested Reading articles found!