Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (7): 849-858    DOI: 10.11900/0412.1961.2018.00481
Current Issue | Archive | Adv Search |
Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal
Canshuai LIU1,2,Zhaohui TIAN2,Zhiming ZHANG1,Jianqiu WANG1(),En-Hou HAN1
1. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Suzhou Nuclear Power Research Institute Co. , Ltd. , Suzhou 215008, China
Cite this article: 

Canshuai LIU,Zhaohui TIAN,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Corrosion Behaivour of X65 Low Carbon Steel During Redox State Transition Process of High LevelNuclear Waste Disposal. Acta Metall Sin, 2019, 55(7): 849-858.

Download:  HTML  PDF(20380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Domestic and foreign researches on the corrosion behavior of low carbon steel canister in high level nuclear waste geological repositories focus on the initial aerobic stage and the later anaerobic stage, while few researches have been reported on the corrosion behavior during the disposal transition period. The long term electrochemical corrosion behavior of X65 low carbon steel in 80 ℃ Gaomiaozi bentonite saturated with anaerobic Beishan groundwater has been studied by electrochemical measurement system in anaerobic glovebox constructed independently. The results indicated that the open circuit potential of X65 low carbon steel decreased gradually during 150 d, while the electrochemical impedance of the corrosion film increased with immersion time. Pitting corrosion occurred at the beginning of immersion tests, and finally transformed into general corrosion. Morphologies, compositions, and phases of the corrosion film formed on the carbon steel surface were examined by SEM, EDS and μ?XRD. The results showed that the corrosion film was mainly composed of blocks, slices, rods and swellings. The elemental distribution in the corrosion film was uniform, and the phases were composed of magnetite and hematite. The average corrosion rates were detected by weight loss measurement, which decreased from 195.88 μm/a to 20.58 μm/a. The corrosion rates (V) followed a power function pattern V=8.34t-0.88, indicating that the film growth process was controlled by oxygen diffusion.

Key words:  geological dispodal      low carbon steel      corrosion      electrochemical      disffusion     
Received:  22 October 2018     
ZTFLH:  TF777.1  
Fund: Key Research Program of Frontier Sciences, Chinese Academy of Sciences(No.QYZDY-SSWJSC012);Key Program of the Chinese Academy of Sciences(No.ZDRW-CN-2017-1)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00481     OR     https://www.ams.org.cn/EN/Y2019/V55/I7/849

Fig.1  The evolution of disposal environment in high level nuclear waste repository
Fig.2  Schematic of the sampling location for immersion test
Fig.3  Schematic of two-electrode electrolytic cell (WE—working electrode, RE—reference electrode, CE—counter electrode, PTFE—polytetrafluoroethylene)
Fig.4  Open circuit potential (OCP) variation tendency with time of X65 low carbon steel in anoxic saturated bentonite (a) and E-pH diagram of Fe-H2O system (b) at 80 ℃ (E—electrochemical potential)
Fig.5  μ-XRD spectra of corrosion products formed on X65 low carbon steel immersed in anoxic saturated bentonite at 80 ℃ for different time
Fig.6  EIS recorded on X65 low carbon steel in anoxic saturated bentonite at 80 ℃ for different time (Z—impedance, Z'—impedance real part, Z''—impedance imaginary part)
Fig.7  Equivalent circuit and physical model of EIS recorded on X65 low carbon steel in anoxic saturated bentonite at 80 ℃ for 1~40 d (a) and 60~150 d (b) (Rs—corrosion media resistance, Rct—charge transfer resistance, RL—localized corrosion resistance, Rf—film resistance, L—inductance, Qdl—constant phase angle element of electric double layer, Qf—constant phase angle element of electric double layer, W—Warburg resistance)

Time

d

Rs

Ω·cm2

Ydl

10-4·Ω-1·cm-2·s-n

ndl

Rct

Ω·cm2

L

H·cm2

RL

Ω·cm2

1344.090.81685112703863
5384.760.82872189507468
10497.710.79139236903644
20505.370.78143530942631
40706.240.78148025241568
Table 1  Fitting parameters of EIS spectra of X65 low carbon steel in anoxic saturated bentonite at 80 ℃for 1~40 d
Fig.8  Surface morphologies of X65 low carbon steel immersed in anoxic saturated bentonite at 80 ℃ for 10 d (a), 50 d (b), 100 d (c) and 150 d (d)
Fig.9  Cross sectional morphologies of X65 low carbon steel immersed in anoxic saturated bentonite at 80 ℃ for 10 d (a), 50 d (b), 100 d (c) and 150 d (d)

Time

d

Rs

Ω·cm2

Ydl

10-4·Ω-1·cm-2·s-n

ndl

Rct

Ω·cm2

Yf

10-4·Ω-1·cm-2·s-n

nf

Rf

Ω·cm2

W

60856.940.7815067.650.79103612.82
80883.890.7915827.400.7514619.54
100905.520.8016927.090.7718784.62
1201114.280.7717087.010.7530763.56
1501475.490.7918306.960.7633742.87
Table 2  Fitting parameters of EIS of X65 low carbon steel in anoxic saturated bentonite at 80 ℃ for 60~150 d
Fig.10  Typical micro morphologies including blocks (a), slices (b), rods (c) and swellings (d) of corrosion products on X65 low carbon steel in saturated bentonite at 80 ℃ for 150 d
SpeciesOFeNaMgAlSiSClCaMn
Block42.1454.690.460.550.580.320.220.140.250.65
Slice56.0539.470.511.180.910.640.230.130.500.38
Rod56.6540.070.340.831.060.210.150.060.300.33
Swelling55.0639.711.450.780.530.660.260.230.380.94
Table 3  Average elemental composition of corrosion products with typical morphologies formed on X65 low carbon steel in saturated bentonite at 80 ℃
Fig.11  Elemental distributions on cross section (selected area in Fig.9d) of corrosion products formed on X65 low carbon steel immersed in saturated bentonite at 80 ℃ for 150 d
Fig.12  Fitting results of the relationship between average corrosion rate (V) and time when X65 low carbon steel has been immersed in saturated bentonite at 80 ℃ (R2—variances between three parallel tests)
[1] Wang J. Geological disposal of high level radioactive waste in China: Review and prospect [J]. Uranium Geol., 2009, 25: 71
[1] (王 驹. 高放废物深地质处置: 回顾与展望 [J]. 铀矿地质, 2009, 25: 71)
[2] Wang J. Geological disposal of high level radio active waste: Progress and challenges [J]. Eng. Sci., 2008, 10(3): 58
[2] (王 驹. 高放废物地质处置: 进展与挑战 [J]. 中国工程科学, 2008, 10(3): 58)
[3] SKB. Integrated account of method, site selection and programme prior to the site investigation phase [R]. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2001
[4] Wang J. Geological Disposal of High Level Radioactive Waste in China in the New Century [M]. Beijing: China Atomic Energy Press, 2016: 127
[4] (王 驹. 新世纪中国高放废物地质处置 [M]. 北京: 中国原子能出版社, 2016: 127)
[5] McMurry J, Ikeda B M, Stroes-Gascoyne S, et al. Evolution of a canadian deep geologic repository: Base scenario [R]. Toronto, Ontario, Canada: Atomic Energy of Canada Limited, 2003
[6] King F, Shoesmith D W. Nuclear waste canister materials: Corrosion behaviour and long-term performance in geological repository systems [A]. Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste [M]. Cambridge: Woodhead Publishing Limited, 2010: 365
[7] Zhang Y J. Numerical analysis for coupled thermo-hydro-mechanical processes in engineered barrier of conceptual nuclear waste repository [J]. Eng. Mech., 2007, 24(5): 186
[7] (张玉军. 核废料处置概念库工程屏障中热-水-应力耦合过程数值分析 [J]. 工程力学, 2007, 24(5): 186)
[8] Honda A, Teshima T, Tsurudome K, et al. Effect of compacted bentonite on the corrosion behavior of carbon steel as geological isolation overpack material [J]. MRS Proceedings, 1990, 212: 287
[9] Xia X, Idemitsu K, Arima T, et al. Corrosion of carbon steel in compacted bentonite and its effect on neptunium diffusion under reducing condition [J]. Appl. Clay Sci., 2005, 28: 89
[10] Kozaki T, Imamura Y, Takada J, et al. Corrosion of iron and migration of corrosion products in compacted bentonite [J]. MRS Proceedings, 1994, 353: 329
[11] Westerman R E, Nelson J L, Pitman S G, et al. Evaluation of iron-base materials for waste package containers in a salt repository [J]. MRS Proc., 2011, 26: 427
[12] Ahn T M, Soo P. Corrosion of low-carbon cast steel in concentrated synthetic groundwater at 80 to 150 ℃ [J]. Waste Manag., 1995, 15: 471
[13] McCright R D, Weiss H. Corrosion behavior of carbon steels under tuff repository environmental conditions [J]. MRS Proceedings, 1984, 44: 287
[14] Smailos E, Fiehn B, Gago J A, et al. Corrosion studies on selected metallic materials for application in nuclear waste disposal containers [R]. Karlsruhe: Institut für Nukleare Entsorgung, 1994
[15] Smailos E, Schwarzkopf W, Kienzler B, et al. Corrosion of carbon-steel containers for heat-generating nuclear waste in brine environments relevant for a rock-salt repository [J]. MRS Proceedings, 1991, 257: 399
[16] Smailos E, Schwarzkopf W, Koester R, et al. Corrosion testing of selected packaging materials for disposal of high-level waste glass in rock and salt formations [R]. Karlsruhe: Institut für Nukleare Entsorgung, 1990
[17] Smailos E. Corrosion investigations of selected container materials for HLW disposal in rock salt formations [R]. Karlsruhe: Kernforschungszentrum Karlsruhe GmbH, 1985
[18] Smart N R, Blackwood D J, Werme L. Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: Part 2—Gas generation [J]. Corrosion, 2002, 58: 627
[19] Johnson L H, King F. Canister options for the disposal of spent fuel [R]. Wettingen: National Cooperative for the Disposal of Radioactive Waste, 2003
[20] King F. Overview of a carbon steel container corrosion model for a deep geological repository in sedimentary rock [R]. Toronto: Nuclear Waste Management Organization, 2007
[21] Zheng M, Huang Y L, Xifang D, et al. Corrosion behavior of Q235 steel in simulated underground water and highly compacted bentonite environment of Beishan area [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 398
[21] (郑 珉, 黄彦亮, 西方笃等. Q235钢在甘肃北山地区地下水模拟液及高压实膨润土环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 398)
[22] Liu C S, Wang J Q, Zhang Z M, et al. Studies on corrosion behaviour of low carbon steel canister with and without γ-irradiation in China's HLW disposal repository [J]. Corros. Eng. Sci. Technol., 2017, 52(suppl.): 136
[23] Liu C S, Wang J Q, Zhang Z M, et al. Characterization of corrosion behavior of irradiated X65 low carbon steel in aerobic and unsaturated gaomiaozi bentonite [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 506
[24] Liu C S, Wang J Q, Zhang Z M, et al. Effect of cumulative gamma irradiation on microstructure and corrosion behaviour of X65 low carbon steel [J]. J. Mater. Sci. Technol., 2018, 34: 2131
[25] Dong J H, Nishimura T, Kodama T. Corrosion behavior of carbon steel in bicarbonate (HCO3) solutions [J]. MRS Proceedings, 2002, 713: JJ11.8
[26] Wen H L, Dong J H, Ke W, et al. Active/passive behavior of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2014, 50: 275
[26] (文怀梁, 董俊华, 柯 伟等. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响 [J]. 金属学报, 2014, 50: 275)
[27] Yang J F, Dong J H, Ke W. Effects of SO42- and Cl- on active/passive corrosion behaviors of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2011, 47: 1321
[27] (阳靖峰, 董俊华, 柯 伟. 重碳酸盐溶液中SO42-和Cl-对低碳钢活化/钝化腐蚀行为的影响 [J]. 金属学报, 2011, 47: 1321)
[28] Yang J F, Dong J H, Ke W, et al. Influence of pH values and corrosion products on low carbon steel corrosion susceptibility in borate buffer solution [J]. Acta Metall. Sin., 2011, 47: 152
[28] (阳靖峰, 董俊华, 柯 伟等. 硼酸缓冲溶液中pH值和腐蚀产物对低碳钢活化/钝化敏感性的影响 [J]. 金属学报, 2011, 47: 152)
[29] Sherar B W A, Keech P G, Shoesmith D W. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions—Part 1: Long term corrosion behaviour [J]. Corros. Sci., 2011, 53: 3636
[30] Sherar B W A, Keech P G, Shoesmith D W. Carbon steel corrosion under anaerobic-aerobic cycling conditions in near-neutral pH saline solutions. Part 2: Corrosion mechanism [J]. Corros. Sci., 2011, 53: 3643
[31] Martin F, Perrin S, Fenart M, et al. On corrosion of carbon steels in Callovo-Oxfordian clay: Complementary EIS, gravimetric and structural study providing insights on long term behaviour in French geological disposal conditions [J]. Corros. Eng. Sci. Technol., 2014, 49: 460
[32] Chen J, Qin Z, Shoesmith D W. Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide [J]. J. Electrochem. Soc., 2010, 157: C338
[33] Wang J Z, Wang J Q. Influence of ethanolamine on corrosion of alloy 690 in simulated secondary water [J]. J. Mater. Sci. Technol., 2015, 31: 1039
[34] Lu Y F, Dong J H, Ke W. Effects of Cl? ions on the corrosion behaviour of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2016, 32: 341
[35] Pourbaix M. Significance of protection potential in pitting and intergranular corrosion [J]. Corrosion, 1970, 26: 431
[36] Cao C N. Principles of Electrochemistry of Corrosion [M]. Beijing: Chemical Industry Press, 2008: 205
[36] (曹楚南. 腐蚀电化学原理 [M]. 北京: 化学工业出版社, 2008: 205)
[37] Liu C S. Corrosion behaviour of X65 low carbon steel in the environment of high level nuclear waste repository [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2018
[37] (刘灿帅. 高放废物地质处置环境中X65低碳钢腐蚀行为研究 [D]. 沈阳: 中国科学院金属研究所, 2018)
[38] Shimizu K, Miyahara K, Hasegawa H, et al. H12: Project to establish the scientific and technical basis for HLW disposal in Japan [R]. Ibaraki: Japan Nuclear Cycle Development Institute, 2000
[39] Leygra C, Wallinder I O, Tidblad J, et al. Atmospheric Corrosion [M]. 2nd Ed., Hoboken: John Wiley & Sons, 2016: 110
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[5] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[8] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[11] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[12] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!