The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility
Yucheng WU1,2,3()
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 2 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China 3 Key Laboratory of Interface Science and Engineering of New Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
Cite this article:
Yucheng WU. The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility. Acta Metall Sin, 2019, 55(2): 171-180.
As a candidate for plasma facing material (PFM) in nuclear fusion situation, polycrystalline W with a characteristic of bad low temperature ductility shows brittle behaviour at room temperature and possesses a high ductile-to-brittle transition temperature, which limits its engineering application. In this paper, several common methods of grain refinement, addition of alloying elements, second-phase particles and tungsten fibre, and deformation processing for improving ductility of W are illustrated. To in-depth comprehend of how to improving W toughening, these toughening methods are discussed from intrinsic or extrinsic toughening mechanisms. Furthermore, the research status and development prospects for improving ductility of W materials have been presented.
Fund: Supported by Magnetic Confinement Fusion Program of National Key Basic Research Program of China (No.2014-GB121001B), National Natural Science Foundation of China (Nos.51474083, 51574101, 51674095 and 51675154) and Program of Introducing Talents of Discipline to Universities of China (No.B18018)
Fig.1 Schematic illustration of intrinsic versus extrinsic toughening mechanisms[36]
Fig.2 SEM fracture morphologies of 93W-4.9Ni-2.1Fe-0.03Y alloy after tensile test at 25 ℃ (a), 500 ℃ (b), 800 ℃ (c) and 1100 ℃ (d)[63]
Fig.3 Low (a1~c1) and high (a2~c2) magnified SEM morphologies of pure W (a1, a2), W-1%TaC (b1, b2) and W-1%TiC (c1, c2) after thermal shock test[76]
Fig.4 Fracture toughness (K) of W single crystal with different crack systems at different temperatures[82] (a) {100}<001> and {100}<011> (b) {110}<001> and {110}<011>
Fig.5 Charpy energy of the rolled pure W with different rolling reductions at different temperatures[86]
Fig.6 Schematic of the toughening mechanism of fibre-reinforced tungsten composites[102]
[1]
Sahin Y.Recent progress in processing of tungsten heavy alloys[J]. J. Powder. Technol., 2014, 2014: 764306
[2]
Kiran U R, Panchal A, Sankaranarayana M, et al.Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys[J]. Mater. Sci. Eng., 2015, A640: 82
[3]
Cai W D, Li Y, Dowding R J, et al.A review of tungsten-based alloys as kinetic energy penetrator materials[J]. Rev. Part. Mater., 1995, 3: 71
[4]
Ramakrishnan P.Powder Metallurgy for Aerospace Application, Powder Metallurgy: Processing for Antomotive, Electrical/Electronic and Engineering Industry[M]. New Delhi, India: New Age International, 2017: 38
[5]
German R M.Critical developments in tungsten heavy alloys[A]. Tungsten and Tungsten Alloys[C].New Jersey, USA: Metal Powder Industries Federation, 1992: 3
[6]
Neu R, Hopf C, Kallenbach A, et al.Operational conditions in a W-clad tokamak[J].J. Nucl. Mater., 2007, 367-370: 1497
[7]
Coenen J W, Antusch S, Aumann M, et al.Materials for DEMO and reactor applications—Boundary conditions and new concepts[J]. Phys. Scr., 2016, 167: 014002
[8]
Travere J M, Aumeunier M H, Joanny M, et al.Imaging challenges for ITER plasma-facing component protection[J]. Fusion Sci. Technol., 2013, 64: 735
[9]
Klopp W D.A review of chromium, molybdenum, and tungsten alloys[J]. J. Less Common Met., 1975, 42: 261
[10]
Ren C, Fang Z Z, Koopman M, et al.Methods for improving ductility of tungsten—A review[J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
[11]
Butler B G, Paramore J D, Ligda J P, et al.Mechanisms of deformation and ductility in tungsten—A review[J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
[12]
Ritchie R O.Mechanisms of fatigue-crack propagation in ductile and brittle solids[J]. Int. J. Fract., 1999, 100: 55
[13]
Hiraoka Y, Kurishita H.Low-temperature strengths and ductility of various tungsten sheets[J]. Adv. Mater. Sci. Eng., 2011, 2011: 509457
[14]
Launey M E, Ritchie R O.On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
[15]
Gr?ger R, Bailey A G, Vitek V.Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K[J]. Acta Mater., 2008, 56: 5401
[16]
Vitek V.Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding[J]. Philos. Mag., 2004, 84: 415
[17]
Takeuchi S.Core structure of a screw dislocation in the b.c.c lattice and its relation to slip behaviour of α-iron[J]. Philos. Mag., 1979, 39A: 661
[18]
Thomser C, Bailescu V, Brezinsek S, et al.Plasma facing materials for the JET ITER-like wall[J]. Fusion Sci. Technol., 2012, 62: 1
[19]
Cui Y N, Po G, Ghoniem N.Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals[J]. Acta Mater., 2016, 108: 128
[20]
Giannattasio A, Yao Z, Tarleton E, et al.Brittle-ductile transitions in polycrystalline tungsten[J]. Philos. Mag., 2010, 90: 3947
[21]
Brunner D, Glebovsky V.Analysis of flow-stress measurements of high-purity tungsten single crystals[J]. Mater. Lett., 2000, 44: 144
[22]
Argon A S, Maloof S R.Plastic deformation of tungsten single crystals at low temperatures[J]. Acta Metall., 1966, 14: 1449
[23]
Beardmore P, Hull D.Deformation and fracture of tungsten single crystals[J]. J. Less Common Met., 1965, 9: 168
[24]
Tan X Y, Luo L M, Lu Z L, et al.Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles[J]. Powder Technol., 2015, 269: 437
[25]
Tan X Y, Luo L M, Chen H Y, et al.Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Sci. Rep., 2015, 5: 12755
[26]
Luo L M, Tan X Y, Chen H Y, et al.Preparation and characteristics of W-1 wt.% TiC alloy via a novel chemical Method and spark plasma sintering[J]. Powder Technol., 2015, 273: 8
[27]
Gludovatz B, Wurster S, Weing?rtner T, et al.Influence of impurities on the fracture behaviour of tungsten[J]. Philos. Mag., 2011, 91: 3006
[28]
Stephens J R.Effect of Oxygen on Mechanical Properties of Tungsten [R]. Washington DC: NASA, 1963
[29]
Joshi A, Stein D F.Intergranular brittleness studies in tungsten using auger spectroscopy[J]. Mater. Trans., 1970, 1: 2543
[30]
Loi T H, Morniroli J P, Gantois M, et al.Brittle fracture of polycrystalline tungsten[J]. J. Mater. Sci., 1985, 20: 199
[31]
Edmonds D V, Jones P N.Interfacial embrittlement in liquid-phase sintered tungsten heavy alloys[J]. Mater. Trans., 1979, 10A: 289
[32]
Cheng Y, Mrovec M, Gumbsch P.Atomistic simulations of interactions between the 1/2<111> edge dislocation and symmetric tilt grain boundaries in tungsten[J]. Philos. Mag., 2008, 88: 547
[33]
Orowan E.Fracture and strength of solids[J]. Rep. Prog. Phys., 1949, 12: 185
[34]
Pokluda J, ?andera P.On the intrinsic ductility and brittleness of crystals[J]. Phys. Status Solidi, 1991, 167B: 543
[35]
Griffith A A. The phenomena of rupture and flow in solids [J]. Philos. Trans. R. Soc. London, 1921, 221 A: 163
[36]
Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
[37]
Kumar K S, Van Swygenhoven H, Suresh S.Mechanical behavior of nanocrystalline metals and alloys[J]. Acta Mater., 2003, 51: 5743
[38]
Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912
[39]
Kou H N, Lu J, Li Y.High-strength and high-ductility nanostructured and amorphous metallic materials[J]. Adv. Mater., 2016, 26: 5518
[40]
Faleschini M, Kreuzer H, Kiener D, et al. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys[J]. J. Nucl. Mater., 2007, 367-370: 800
[41]
Németh A A N, Reiser J, Armstrong D E J, et al. The nature of the brittle-to-ductile transition of ultra fine grained tungsten (W) foil[J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 9
[42]
Hao T, Fan Z, Zhang T, et al.Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing[J]. J. Nucl. Mater., 2014, 455: 595
[43]
Mutoh Y, Ichikawa K, Nagata K, et al.Effect of rhenium addition on fracture toughness of tungsten at elevated temperature[J]. J. Mater. Sci., 1995, 30: 770
[44]
Geach G A, Hughes J R.The alloys of rhenium and molybdenum or with tungsten and having good high temperature properties [A], Plansee Proceedings P [C]. London: Pergamon Press, 1955
[45]
Klopp William D, Witzke Walter R, Raffo Peter L.Mechanical properties of dilute tungsten-rhenium alloys [R]. NASA Technical Note NASA TN D-3483, Washington, DC, 1966
[46]
Petukhov B V.Effect of solid-solution softening of crystalline materials: Review[J]. Crystallogr. Rep., 2007, 52: 112
[47]
Smialek R L, Webb G L, Mitchell T E.Solid solution softening in BCC metal alloys[J]. Scr. Metall., 1970, 4: 33
[48]
Hu Y J, Fellinger M R, Butler B G, et al.Solute-induced solid-solution softening and hardening in bcc tungsten[J]. Acta Mater., 2017, 141: 304
[49]
Romaner L, Ambrosch-Draxl C, Pippan R.Effect of rhenium on the dislocation core structure in tungsten[J]. Phys. Rev. Lett., 2010, 104: 195503
[50]
Setyawan W, Kurtz R J.Effects of transition metals on the grain boundary cohesion in tungsten[J]. Scr. Mater., 2012, 66: 558
[51]
Nemoto Y, Hasegawa A, Satou M, et al. Microstructural development of neutron irradiated W-Re alloys [J]. J. Nucl. Mater., 2000, 283-287: 1144
[52]
Luo A, Jacobson D L, Shin K S.Solution softening mechanism of iridium and rhenium in tungsten at room temperature[J]. Int. J. Refract. Met. Hard Mater., 1991, 10: 107
[53]
Li X J, Sch?necker S, Li R H, et al.Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: Effects of transmutation of W[J]. J. Phys. Condens. Mat., 2016, 28: 295501
[54]
Wurster S, Gludovatz B, Hoffmann A, et al.Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites[J]. J. Nucl. Mater., 2011, 413: 166
[55]
Muzyk M, Nguyen-Manh D, Kurzydowski K J, et al.Phase stability, point defects, and elastic properties of W-V and W-Ta alloys[J]. Phys. Rev., 2011, 84B: 104115
[56]
Chen B H, Cao S H, Xu H, et al.Effect of processing parameters on microstructure and mechanical properties of 90W-6Ni-4Mn heavy alloy[J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 293
[57]
Senthilnathan N, Annamalai A R, Venkatachalam G.Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys[J]. Mater. Sci. Eng., 2018, A710: 66
[58]
Kumari A, Prabhu G, Sankaranarayana M et al. Effect of solution treatment temperature and cooling rate on the mechanical properties of tungsten heavy alloy[J]. Mater. Sci. Eng., 2017, A688: 225
[59]
Senthilnathan N, Annamalai A R, Venkatachalam G.Sintering of tungsten and tungsten heavy alloys of W-Ni-Fe and W-Ni-Cu: A review[J]. Trans. Indian Inst. Met., 2017, 70: 1161
[60]
Dewen T, Zou S L, Yan L.Research on the preparation and shielding properties of W-Ni-Fe alloy material by liquid phase sintering[J]. Powder Metall., 2018, 61: 28
[61]
Lea C, Muddle B C, Edmonds D V.Segregation to interphase boundaries in liquid-phase sintered tungsten alloys[J]. Metall. Trans., 1983, 14A: 667
[62]
Wu G C, You Q, Wang D.Influence of the addition of Lanthanum on a W-Mo-Ni-Fe heavy alloy[J]. Int. J. Refract. Met. Hard Mater., 1999, 17: 299
[63]
Gong X, Fan J L, Ding F.Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25-1100 ℃[J]. Mater. Sci. Eng., 2015, A646: 315
[64]
Lang S T, Yan Q Z, Sun N B, et al.Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical Method[J]. Fusion. Eng. Des., 2017, 121: 366
[65]
Kurishita H, Matsuo S, Arakawa H, et al.Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance[J]. J. Nucl. Mater., 2010, 398: 87
[66]
Fukuda M, Hasegawa A, Tanno T, et al.Property change of advanced tungsten alloys due to neutron irradiation[J]. J. Nucl. Mater., 2013, 442: S273
[67]
Zhang T Q, Wang Y J, Zhou Y, et al.Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites[J]. Mater. Sci. Eng., 2009, A512: 19
[68]
Xie Z M, Liu R, Miao S, et al.Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature[J]. Sci. Rep., 2015, 5: 16014
[69]
Deng H W, Xie Z M, Wang Y K, et al.Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology[J]. Mater. Sci. Eng., 2018, A715: 117
[70]
Miao S, Xie Z M, Zeng L F, et al.Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt. % TaC alloys fabricated by an optimized multi-step process[J]. Nucl. Mater. Energy, 2017, 13: 12
[71]
Dong Z, Liu N, Ma Z Q, et al.Microstructure refinement in W-Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering[J]. Sci. Rep., 2017, 7: 6051
[72]
Yao G, Tan X Y, Luo L M, et al.Repair behavior of He+-irradiated W-Y2O3 composites after different temperature-isochronal annealing experiments[J]. Nucl. Instrum. Met. Phys. Res., 2018, 415B: 82
[73]
Liu R, Xie Z M, Hao T, et al.Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening[J]. J. Nucl. Mater., 2014, 451: 35
[74]
Xu L, Yan Q Z, Xia M, et al.Preparation of La2O3 doped ultra-fine W powders by hydrothermal-hydrogen reduction process[J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 238
[75]
Zhang X X, Yan Q Z, Yang C T, et al.Recrystallization temperature of tungsten with different deformation degrees[J]. Rare Met., 2016, 35: 556
[76]
Tan X Y, Li P, Luo L M, et al.Effect of second-phase particles on the properties of W-based materials under high-heat loading[J]. Nucl. Mater. Energy, 2016, 9: 399
[77]
Zhang X X, Yan Q Z, Yang C T, et al.Microstructure, mechanical properties and bonding characteristic of deformed tungsten[J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 302
[78]
Carsten B, Ute J, Jan H, et al.The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallorgraphic texture, grain size and dislocation density on the transition temperature[J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 146
[79]
Aleksandro I V, Raab G I, Shestakova L O, et al.Refinement of tungsten microstructure by severe plastic deformation[J]. Phys. Met. Metallogr., 2002, 93: 493
[80]
Vorhauer A, Pippan R.Microstructure and thermal stability of tungsten based materials processed by means of severe plastic deformation[J]. Mater. Sci. Forum., 2003, 426-432: 2747
[81]
Li P, Wang X, Xue K M, et al.Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion[J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
[82]
Gumbsch P.Brittle fracture and the brittle-to-ductile transition of tungsten[J]. J. Nucl. Mater., 2003, 323: 304
[83]
Zhao M Y, Zhou Z J, Zhong M, et al.Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W-Y2O3 alloy[J]. Mater. Sci. Eng., 2015, A646: 19
[84]
Rupp D, M?nig R, Gruber P, et al.Fracture toughness and microstructural characterization of polycrystalline rolled tungsten[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 669
[85]
Reiser J, Hoffmann J, J?ntsch U, et al.Ductilisation of tungsten (W): On the increase of strength and room-temperature tensile ductility through cold-rolling[J]. Int. J. Refract. Met. Hard Mater., 2017, 64: 261
[86]
Zhang X X, Yan Q Z, Lang S T, et al.Texture evolution and basic thermal-mechanical properties of pure tungsten under various rolling reductions[J]. J. Nucl. Mater., 2016, 468: 339
[87]
Liu R, Xie Z M, Zhang T, et al.Mechanical properties and microstructures of W-1%Y2O3 microalloyed with Zr[J]. Mater. Sci. Eng., 2016, A660: 19
[88]
Wang Y K, Miao S, Xie Z M, et al.Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 492: 260
[89]
Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209
[90]
Zhang X X, Yan Q Z, Lang S T, et al.Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten[J]. J. Nucl. Mater., 2014, 452: 257
[91]
Yan Q Z, Zhang X X, Wang T N, et al.Effect of hot working process on the mechanical properties of tungsten materials[J]. J. Nucl. Mater., 2013, 442(suppl. 1): S233
[92]
Hao T, Fan Z Q, Zhao S X, et al.Microstructures and properties of ultrafine-grained tungsten produced by equal-channel angular pressing at low temperature[J]. J. Nucl. Mater., 2013, 433: 351
[93]
Hao T, Fan Z Q, Zhang T, et al.Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing[J]. J. Nucl. Mater., 2014, 455: 595
[94]
Rieth M, Hoffmann A.Influence of microstructure and notch fabrication on impact bending properties of tungsten materials[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 679
[95]
Reiser J, Garrison L, Greuner H, et al.Ductilisation of tungsten (W): Tungsten laminated composites[J]. Int. J. Refract. Met. Hard Mater., 2017, 69: 66
[96]
Guo H Y, Xia M, Chan L C, et al.Nanostructured laminar tungsten alloy with improved ductility by surface mechanical attrition treatment[J]. Sci. Rep., 2017, 7: 1351
[97]
Wei Q, Kecskes L J.Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten[J]. Mater. Sci. Eng., 2008, A491: 62
[98]
Ding H L, Xie Z M, Fang Q F, et al.Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique[J]. Mater. Sci. Eng., 2018, A716: 268
[99]
Riesch J, Buffiere J Y, H?schen T, et al.In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system[J]. Acta Mater., 2013, 61: 7060
[100]
Neu R, Riesch J, Müller A V, et al.Tungsten fibre-reinforced composites for advanced plasma facing components[J]. Nucl. Mater. Energy, 2017, 12: 1308
[101]
Gietl H, Riesch J, Coenen J W, et al.Tensile deformation behavior of tungsten fibre-reinforced tungsten composite specimens in as-fabricated state[J]. Fusion Eng. Des., 2017, 124: 396
[102]
Riesch J, Han Y, Almanst?tter J, et al.Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—Potassium doped tungsten wire[J]. Phys. Scr., 2016, 167: 014006
[103]
Riesch J, Almanst?tter J, Coenen J W, et al.Properties of drawn W wire used as high performance fibre in tungsten fibre-reinforced tungsten composite[J]. Mater. Sci. Eng., 2016, 139: 012043
[104]
Jasper B, Schoenen S, Du J, et al.Behavior of tungsten fiber-reinforced tungsten based on single fiber push-out study[J]. Nucl. Mater. Energy, 2016, 9: 416
[105]
Mao Y, Coenen J W, Riesch J, et al.Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology[J]. Composites, 2018, 107A: 342
[106]
Zhang L H, Jiang Y, Fang Q F, et al.Comparative investigation of tungsten fibre nets reinforced tungsten composite fabricated by three different methods[J]. Metals, 2017, 7: 249
[107]
Zhao P, Riesch J, H?schen T, et al.Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments[J]. Int. J. Refract. Met. Hard Mater., 2017, 68: 29
[108]
Reiser J, Hoffmann J, J?ntsch U, et al.Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling[J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351