Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (2): 171-180    DOI: 10.11900/0412.1961.2018.00404
Orginal Article Current Issue | Archive | Adv Search |
The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility
Yucheng WU1,2,3()
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China
3 Key Laboratory of Interface Science and Engineering of New Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
Download:  HTML  PDF(3521KB) 
Export:  BibTeX | EndNote (RIS)      

As a candidate for plasma facing material (PFM) in nuclear fusion situation, polycrystalline W with a characteristic of bad low temperature ductility shows brittle behaviour at room temperature and possesses a high ductile-to-brittle transition temperature, which limits its engineering application. In this paper, several common methods of grain refinement, addition of alloying elements, second-phase particles and tungsten fibre, and deformation processing for improving ductility of W are illustrated. To in-depth comprehend of how to improving W toughening, these toughening methods are discussed from intrinsic or extrinsic toughening mechanisms. Furthermore, the research status and development prospects for improving ductility of W materials have been presented.

Key words:  plasma facing material      W      toughening mechanism      mechanical performance      intrinsic toughening      extrinsic toughening     
Received:  31 August 2018     
ZTFLH:  TG146.4  
Fund: Supported by Magnetic Confinement Fusion Program of National Key Basic Research Program of China (No.2014-GB121001B), National Natural Science Foundation of China (Nos.51474083, 51574101, 51674095 and 51675154) and Program of Introducing Talents of Discipline to Universities of China (No.B18018)

Cite this article: 

Yucheng WU. The Routes and Mechanism of Plasma Facing Tungsten Materials to Improve Ductility. Acta Metall Sin, 2019, 55(2): 171-180.

URL:     OR

Fig.1  Schematic illustration of intrinsic versus extrinsic toughening mechanisms[36]
Fig.2  SEM fracture morphologies of 93W-4.9Ni-2.1Fe-0.03Y alloy after tensile test at 25 ℃ (a), 500 ℃ (b), 800 ℃ (c) and 1100 ℃ (d)[63]
Fig.3  Low (a1~c1) and high (a2~c2) magnified SEM morphologies of pure W (a1, a2), W-1%TaC (b1, b2) and W-1%TiC (c1, c2) after thermal shock test[76]
Fig.4  Fracture toughness (K) of W single crystal with different crack systems at different temperatures[82] (a) {100}<001> and {100}<011> (b) {110}<001> and {110}<011>
Fig.5  Charpy energy of the rolled pure W with different rolling reductions at different temperatures[86]
Fig.6  Schematic of the toughening mechanism of fibre-reinforced tungsten composites[102]
[1] Sahin Y.Recent progress in processing of tungsten heavy alloys[J]. J. Powder. Technol., 2014, 2014: 764306
[2] Kiran U R, Panchal A, Sankaranarayana M, et al.Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys[J]. Mater. Sci. Eng., 2015, A640: 82
[3] Cai W D, Li Y, Dowding R J, et al.A review of tungsten-based alloys as kinetic energy penetrator materials[J]. Rev. Part. Mater., 1995, 3: 71
[4] Ramakrishnan P.Powder Metallurgy for Aerospace Application, Powder Metallurgy: Processing for Antomotive, Electrical/Electronic and Engineering Industry[M]. New Delhi, India: New Age International, 2017: 38
[5] German R M.Critical developments in tungsten heavy alloys[A]. Tungsten and Tungsten Alloys[C].New Jersey, USA: Metal Powder Industries Federation, 1992: 3
[6] Neu R, Hopf C, Kallenbach A, et al.Operational conditions in a W-clad tokamak[J].J. Nucl. Mater., 2007, 367-370: 1497
[7] Coenen J W, Antusch S, Aumann M, et al.Materials for DEMO and reactor applications—Boundary conditions and new concepts[J]. Phys. Scr., 2016, 167: 014002
[8] Travere J M, Aumeunier M H, Joanny M, et al.Imaging challenges for ITER plasma-facing component protection[J]. Fusion Sci. Technol., 2013, 64: 735
[9] Klopp W D.A review of chromium, molybdenum, and tungsten alloys[J]. J. Less Common Met., 1975, 42: 261
[10] Ren C, Fang Z Z, Koopman M, et al.Methods for improving ductility of tungsten—A review[J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 170
[11] Butler B G, Paramore J D, Ligda J P, et al.Mechanisms of deformation and ductility in tungsten—A review[J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 248
[12] Ritchie R O.Mechanisms of fatigue-crack propagation in ductile and brittle solids[J]. Int. J. Fract., 1999, 100: 55
[13] Hiraoka Y, Kurishita H.Low-temperature strengths and ductility of various tungsten sheets[J]. Adv. Mater. Sci. Eng., 2011, 2011: 509457
[14] Launey M E, Ritchie R O.On the fracture toughness of advanced materials[J]. Adv. Mater., 2009, 21: 2103
[15] Gr?ger R, Bailey A G, Vitek V.Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0 K[J]. Acta Mater., 2008, 56: 5401
[16] Vitek V.Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding[J]. Philos. Mag., 2004, 84: 415
[17] Takeuchi S.Core structure of a screw dislocation in the b.c.c lattice and its relation to slip behaviour of α-iron[J]. Philos. Mag., 1979, 39A: 661
[18] Thomser C, Bailescu V, Brezinsek S, et al.Plasma facing materials for the JET ITER-like wall[J]. Fusion Sci. Technol., 2012, 62: 1
[19] Cui Y N, Po G, Ghoniem N.Temperature insensitivity of the flow stress in body-centered cubic micropillar crystals[J]. Acta Mater., 2016, 108: 128
[20] Giannattasio A, Yao Z, Tarleton E, et al.Brittle-ductile transitions in polycrystalline tungsten[J]. Philos. Mag., 2010, 90: 3947
[21] Brunner D, Glebovsky V.Analysis of flow-stress measurements of high-purity tungsten single crystals[J]. Mater. Lett., 2000, 44: 144
[22] Argon A S, Maloof S R.Plastic deformation of tungsten single crystals at low temperatures[J]. Acta Metall., 1966, 14: 1449
[23] Beardmore P, Hull D.Deformation and fracture of tungsten single crystals[J]. J. Less Common Met., 1965, 9: 168
[24] Tan X Y, Luo L M, Lu Z L, et al.Development of tungsten as plasma-facing materials by doping tantalum carbide nanoparticles[J]. Powder Technol., 2015, 269: 437
[25] Tan X Y, Luo L M, Chen H Y, et al.Mechanical properties and microstructural change of W-Y2O3 alloy under helium irradiation[J]. Sci. Rep., 2015, 5: 12755
[26] Luo L M, Tan X Y, Chen H Y, et al.Preparation and characteristics of W-1 wt.% TiC alloy via a novel chemical Method and spark plasma sintering[J]. Powder Technol., 2015, 273: 8
[27] Gludovatz B, Wurster S, Weing?rtner T, et al.Influence of impurities on the fracture behaviour of tungsten[J]. Philos. Mag., 2011, 91: 3006
[28] Stephens J R.Effect of Oxygen on Mechanical Properties of Tungsten [R]. Washington DC: NASA, 1963
[29] Joshi A, Stein D F.Intergranular brittleness studies in tungsten using auger spectroscopy[J]. Mater. Trans., 1970, 1: 2543
[30] Loi T H, Morniroli J P, Gantois M, et al.Brittle fracture of polycrystalline tungsten[J]. J. Mater. Sci., 1985, 20: 199
[31] Edmonds D V, Jones P N.Interfacial embrittlement in liquid-phase sintered tungsten heavy alloys[J]. Mater. Trans., 1979, 10A: 289
[32] Cheng Y, Mrovec M, Gumbsch P.Atomistic simulations of interactions between the 1/2<111> edge dislocation and symmetric tilt grain boundaries in tungsten[J]. Philos. Mag., 2008, 88: 547
[33] Orowan E.Fracture and strength of solids[J]. Rep. Prog. Phys., 1949, 12: 185
[34] Pokluda J, ?andera P.On the intrinsic ductility and brittleness of crystals[J]. Phys. Status Solidi, 1991, 167B: 543
[35] Griffith A A. The phenomena of rupture and flow in solids [J]. Philos. Trans. R. Soc. London, 1921, 221 A: 163
[36] Ritchie R O.The conflicts between strength and toughness[J]. Nat. Mater., 2011, 10: 817
[37] Kumar K S, Van Swygenhoven H, Suresh S.Mechanical behavior of nanocrystalline metals and alloys[J]. Acta Mater., 2003, 51: 5743
[38] Wang Y M, Chen M W, Zhou F H, et al.High tensile ductility in a nanostructured metal[J]. Nature, 2002, 419: 912
[39] Kou H N, Lu J, Li Y.High-strength and high-ductility nanostructured and amorphous metallic materials[J]. Adv. Mater., 2016, 26: 5518
[40] Faleschini M, Kreuzer H, Kiener D, et al. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys[J]. J. Nucl. Mater., 2007, 367-370: 800
[41] Németh A A N, Reiser J, Armstrong D E J, et al. The nature of the brittle-to-ductile transition of ultra fine grained tungsten (W) foil[J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 9
[42] Hao T, Fan Z, Zhang T, et al.Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing[J]. J. Nucl. Mater., 2014, 455: 595
[43] Mutoh Y, Ichikawa K, Nagata K, et al.Effect of rhenium addition on fracture toughness of tungsten at elevated temperature[J]. J. Mater. Sci., 1995, 30: 770
[44] Geach G A, Hughes J R.The alloys of rhenium and molybdenum or with tungsten and having good high temperature properties [A], Plansee Proceedings P [C]. London: Pergamon Press, 1955
[45] Klopp William D, Witzke Walter R, Raffo Peter L.Mechanical properties of dilute tungsten-rhenium alloys [R]. NASA Technical Note NASA TN D-3483, Washington, DC, 1966
[46] Petukhov B V.Effect of solid-solution softening of crystalline materials: Review[J]. Crystallogr. Rep., 2007, 52: 112
[47] Smialek R L, Webb G L, Mitchell T E.Solid solution softening in BCC metal alloys[J]. Scr. Metall., 1970, 4: 33
[48] Hu Y J, Fellinger M R, Butler B G, et al.Solute-induced solid-solution softening and hardening in bcc tungsten[J]. Acta Mater., 2017, 141: 304
[49] Romaner L, Ambrosch-Draxl C, Pippan R.Effect of rhenium on the dislocation core structure in tungsten[J]. Phys. Rev. Lett., 2010, 104: 195503
[50] Setyawan W, Kurtz R J.Effects of transition metals on the grain boundary cohesion in tungsten[J]. Scr. Mater., 2012, 66: 558
[51] Nemoto Y, Hasegawa A, Satou M, et al. Microstructural development of neutron irradiated W-Re alloys [J]. J. Nucl. Mater., 2000, 283-287: 1144
[52] Luo A, Jacobson D L, Shin K S.Solution softening mechanism of iridium and rhenium in tungsten at room temperature[J]. Int. J. Refract. Met. Hard Mater., 1991, 10: 107
[53] Li X J, Sch?necker S, Li R H, et al.Ab initio calculations of mechanical properties of bcc W-Re-Os random alloys: Effects of transmutation of W[J]. J. Phys. Condens. Mat., 2016, 28: 295501
[54] Wurster S, Gludovatz B, Hoffmann A, et al.Fracture behaviour of tungsten-vanadium and tungsten-tantalum alloys and composites[J]. J. Nucl. Mater., 2011, 413: 166
[55] Muzyk M, Nguyen-Manh D, Kurzydowski K J, et al.Phase stability, point defects, and elastic properties of W-V and W-Ta alloys[J]. Phys. Rev., 2011, 84B: 104115
[56] Chen B H, Cao S H, Xu H, et al.Effect of processing parameters on microstructure and mechanical properties of 90W-6Ni-4Mn heavy alloy[J]. Int. J. Refract. Met. Hard Mater., 2015, 48: 293
[57] Senthilnathan N, Annamalai A R, Venkatachalam G.Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys[J]. Mater. Sci. Eng., 2018, A710: 66
[58] Kumari A, Prabhu G, Sankaranarayana M et al. Effect of solution treatment temperature and cooling rate on the mechanical properties of tungsten heavy alloy[J]. Mater. Sci. Eng., 2017, A688: 225
[59] Senthilnathan N, Annamalai A R, Venkatachalam G.Sintering of tungsten and tungsten heavy alloys of W-Ni-Fe and W-Ni-Cu: A review[J]. Trans. Indian Inst. Met., 2017, 70: 1161
[60] Dewen T, Zou S L, Yan L.Research on the preparation and shielding properties of W-Ni-Fe alloy material by liquid phase sintering[J]. Powder Metall., 2018, 61: 28
[61] Lea C, Muddle B C, Edmonds D V.Segregation to interphase boundaries in liquid-phase sintered tungsten alloys[J]. Metall. Trans., 1983, 14A: 667
[62] Wu G C, You Q, Wang D.Influence of the addition of Lanthanum on a W-Mo-Ni-Fe heavy alloy[J]. Int. J. Refract. Met. Hard Mater., 1999, 17: 299
[63] Gong X, Fan J L, Ding F.Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25-1100 ℃[J]. Mater. Sci. Eng., 2015, A646: 315
[64] Lang S T, Yan Q Z, Sun N B, et al.Effects of TiC content on microstructure, mechanical properties, and thermal conductivity of W-TiC alloys fabricated by a wet-chemical Method[J]. Fusion. Eng. Des., 2017, 121: 366
[65] Kurishita H, Matsuo S, Arakawa H, et al.Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance[J]. J. Nucl. Mater., 2010, 398: 87
[66] Fukuda M, Hasegawa A, Tanno T, et al.Property change of advanced tungsten alloys due to neutron irradiation[J]. J. Nucl. Mater., 2013, 442: S273
[67] Zhang T Q, Wang Y J, Zhou Y, et al.Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites[J]. Mater. Sci. Eng., 2009, A512: 19
[68] Xie Z M, Liu R, Miao S, et al.Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature[J]. Sci. Rep., 2015, 5: 16014
[69] Deng H W, Xie Z M, Wang Y K, et al.Mechanical properties and thermal stability of pure W and W-0.5 wt%ZrC alloy manufactured with the same technology[J]. Mater. Sci. Eng., 2018, A715: 117
[70] Miao S, Xie Z M, Zeng L F, et al.Mechanical properties, thermal stability and microstructure of fine-grained W-0.5 wt. % TaC alloys fabricated by an optimized multi-step process[J]. Nucl. Mater. Energy, 2017, 13: 12
[71] Dong Z, Liu N, Ma Z Q, et al.Microstructure refinement in W-Y2O3 alloy fabricated by wet chemical method with surfactant addition and subsequent spark plasma sintering[J]. Sci. Rep., 2017, 7: 6051
[72] Yao G, Tan X Y, Luo L M, et al.Repair behavior of He+-irradiated W-Y2O3 composites after different temperature-isochronal annealing experiments[J]. Nucl. Instrum. Met. Phys. Res., 2018, 415B: 82
[73] Liu R, Xie Z M, Hao T, et al.Fabricating high performance tungsten alloys through zirconium micro-alloying and nano-sized yttria dispersion strengthening[J]. J. Nucl. Mater., 2014, 451: 35
[74] Xu L, Yan Q Z, Xia M, et al.Preparation of La2O3 doped ultra-fine W powders by hydrothermal-hydrogen reduction process[J]. Int. J. Refract. Met. Hard Mater., 2013, 36: 238
[75] Zhang X X, Yan Q Z, Yang C T, et al.Recrystallization temperature of tungsten with different deformation degrees[J]. Rare Met., 2016, 35: 556
[76] Tan X Y, Li P, Luo L M, et al.Effect of second-phase particles on the properties of W-based materials under high-heat loading[J]. Nucl. Mater. Energy, 2016, 9: 399
[77] Zhang X X, Yan Q Z, Yang C T, et al.Microstructure, mechanical properties and bonding characteristic of deformed tungsten[J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 302
[78] Carsten B, Ute J, Jan H, et al.The brittle-to-ductile transition in cold rolled tungsten plates: Impact of crystallorgraphic texture, grain size and dislocation density on the transition temperature[J]. Int. J. Refract. Met. Hard Mater., 2019, 78: 146
[79] Aleksandro I V, Raab G I, Shestakova L O, et al.Refinement of tungsten microstructure by severe plastic deformation[J]. Phys. Met. Metallogr., 2002, 93: 493
[80] Vorhauer A, Pippan R.Microstructure and thermal stability of tungsten based materials processed by means of severe plastic deformation[J]. Mater. Sci. Forum., 2003, 426-432: 2747
[81] Li P, Wang X, Xue K M, et al.Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion[J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
[82] Gumbsch P.Brittle fracture and the brittle-to-ductile transition of tungsten[J]. J. Nucl. Mater., 2003, 323: 304
[83] Zhao M Y, Zhou Z J, Zhong M, et al.Effect of hot rolling on the microstructure and fracture behavior of a bulk fine-grained W-Y2O3 alloy[J]. Mater. Sci. Eng., 2015, A646: 19
[84] Rupp D, M?nig R, Gruber P, et al.Fracture toughness and microstructural characterization of polycrystalline rolled tungsten[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 669
[85] Reiser J, Hoffmann J, J?ntsch U, et al.Ductilisation of tungsten (W): On the increase of strength and room-temperature tensile ductility through cold-rolling[J]. Int. J. Refract. Met. Hard Mater., 2017, 64: 261
[86] Zhang X X, Yan Q Z, Lang S T, et al.Texture evolution and basic thermal-mechanical properties of pure tungsten under various rolling reductions[J]. J. Nucl. Mater., 2016, 468: 339
[87] Liu R, Xie Z M, Zhang T, et al.Mechanical properties and microstructures of W-1%Y2O3 microalloyed with Zr[J]. Mater. Sci. Eng., 2016, A660: 19
[88] Wang Y K, Miao S, Xie Z M, et al.Thermal stability and mechanical properties of HfC dispersion strengthened W alloys as plasma-facing components in fusion devices[J]. J. Nucl. Mater., 2017, 492: 260
[89] Xie Z M, Liu R, Miao S, et al.High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys[J]. J. Nucl. Mater., 2016, 469: 209
[90] Zhang X X, Yan Q Z, Lang S T, et al.Basic thermal-mechanical properties and thermal shock, fatigue resistance of swaged + rolled potassium doped tungsten[J]. J. Nucl. Mater., 2014, 452: 257
[91] Yan Q Z, Zhang X X, Wang T N, et al.Effect of hot working process on the mechanical properties of tungsten materials[J]. J. Nucl. Mater., 2013, 442(suppl. 1): S233
[92] Hao T, Fan Z Q, Zhao S X, et al.Microstructures and properties of ultrafine-grained tungsten produced by equal-channel angular pressing at low temperature[J]. J. Nucl. Mater., 2013, 433: 351
[93] Hao T, Fan Z Q, Zhang T, et al.Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing[J]. J. Nucl. Mater., 2014, 455: 595
[94] Rieth M, Hoffmann A.Influence of microstructure and notch fabrication on impact bending properties of tungsten materials[J]. Int. J. Refract. Met. Hard Mater., 2010, 28: 679
[95] Reiser J, Garrison L, Greuner H, et al.Ductilisation of tungsten (W): Tungsten laminated composites[J]. Int. J. Refract. Met. Hard Mater., 2017, 69: 66
[96] Guo H Y, Xia M, Chan L C, et al.Nanostructured laminar tungsten alloy with improved ductility by surface mechanical attrition treatment[J]. Sci. Rep., 2017, 7: 1351
[97] Wei Q, Kecskes L J.Effect of low-temperature rolling on the tensile behavior of commercially pure tungsten[J]. Mater. Sci. Eng., 2008, A491: 62
[98] Ding H L, Xie Z M, Fang Q F, et al.Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique[J]. Mater. Sci. Eng., 2018, A716: 268
[99] Riesch J, Buffiere J Y, H?schen T, et al.In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system[J]. Acta Mater., 2013, 61: 7060
[100] Neu R, Riesch J, Müller A V, et al.Tungsten fibre-reinforced composites for advanced plasma facing components[J]. Nucl. Mater. Energy, 2017, 12: 1308
[101] Gietl H, Riesch J, Coenen J W, et al.Tensile deformation behavior of tungsten fibre-reinforced tungsten composite specimens in as-fabricated state[J]. Fusion Eng. Des., 2017, 124: 396
[102] Riesch J, Han Y, Almanst?tter J, et al.Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO—Potassium doped tungsten wire[J]. Phys. Scr., 2016, 167: 014006
[103] Riesch J, Almanst?tter J, Coenen J W, et al.Properties of drawn W wire used as high performance fibre in tungsten fibre-reinforced tungsten composite[J]. Mater. Sci. Eng., 2016, 139: 012043
[104] Jasper B, Schoenen S, Du J, et al.Behavior of tungsten fiber-reinforced tungsten based on single fiber push-out study[J]. Nucl. Mater. Energy, 2016, 9: 416
[105] Mao Y, Coenen J W, Riesch J, et al.Influence of the interface strength on the mechanical properties of discontinuous tungsten fiber-reinforced tungsten composites produced by field assisted sintering technology[J]. Composites, 2018, 107A: 342
[106] Zhang L H, Jiang Y, Fang Q F, et al.Comparative investigation of tungsten fibre nets reinforced tungsten composite fabricated by three different methods[J]. Metals, 2017, 7: 249
[107] Zhao P, Riesch J, H?schen T, et al.Microstructure, mechanical behaviour and fracture of pure tungsten wire after different heat treatments[J]. Int. J. Refract. Met. Hard Mater., 2017, 68: 29
[108] Reiser J, Hoffmann J, J?ntsch U, et al.Ductilisation of tungsten (W): On the shift of the brittle-to-ductile transition (BDT) to lower temperatures through cold rolling[J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 351
[1] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[2] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[3] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[4] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[5] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[6] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[7] WEI Shizhong,XU Liujie. Review on Research Progress of Steel and Iron Wear-Resistant Materials[J]. 金属学报, 2020, 56(4): 523-538.
[8] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[9] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[10] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[11] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[12] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[13] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[14] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[15] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
No Suggested Reading articles found!