|
|
A New Class of Ordered Structure Between Crystals and Quasicrystals |
Gaowu QIN( ), Hongbo XIE, Hucheng PAN, Yuping REN |
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
Gaowu QIN, Hongbo XIE, Hucheng PAN, Yuping REN. A New Class of Ordered Structure Between Crystals and Quasicrystals. Acta Metall Sin, 2018, 54(11): 1490-1502.
|
Abstract This paper briefly reviews the development and research history of strutures of the solid matters, and highlight two new strcutures of precipitates in Mg alloys found by our group recently. (1) The isothermally aged (Mg, In)2Ca "Laves phase" contains two separate unit cells promoting the formation of five tiling patterns. The bonding of these patterns leads to the generation of the present phase but without any six-fold rotational symmetry in a long-range on the (0001)L basal plane, constrainted by the Penrose geometrical rule, completely different from the known Laves phases. (2) The MgZn five-fold nanodomain structure is self-assembled by two separate unit cells (72° rhombus structure: MgZn2, and 72° equilateral hexagon structure: MgZn) under the Penrose geomotrical constraints, containing 2D five-fold symmetry locally and short-range ordered C14 and C15 Laves structures. These two special structures without any translational symmetry on the normal plane while periodical arrangement along the normal direction, are a new class of intermediate structures between crystals and quasicrystals. And thus, they does not belong to any crystals or 2D ordered structures in quasicrystals or quasicrystal approximants.
|
Received: 30 July 2018
|
|
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0701202) and National Natural Science Foundation of China (Nos.51371046, 51525101, 51501032 and U1610253) |
[1] | Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33(5): 177(汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177) | [2] | Bindi L, Steinhardt P J, Yao N, et al.Natural quasicrystals[J]. Science, 2009, 324: 1306 | [3] | Shechtman D, Blech I, Gratias D, et al.Metallic phase with long-range orientational order and no translational symmetry[J]. Phys. Rev. Lett., 1984, 53: 1951 | [4] | Zhang Z, Ye H Q, Kuo K H.A new icosahedral phase with m35 symmetry[J]. Philos. Mag., 1985, 52A: L49 | [5] | Ohashi W, Spaepen F.Stable Ga-Mg-Zn quasi-periodic crystals with pentagonal dodecahedral solidification morphology[J]. Nature, 1987, 330: 555 | [6] | Abe E, Tsai A P.Quasicrystal-crystal transformation in Zn-Mg-rare-earth alloys[J]. Phys. Rev. Lett., 1999, 83: 753 | [7] | Guo J Q, Abe E, Tsai A P.Stable icosahedral quasicrystals in binary Cd-Ca and Cd-Yb systems[J]. Phys. Rev., 2000, 62B: R14605 | [8] | Tian Y, Huang H, Yuan G Y, et al.Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg-Zn-Gd-based alloys[J]. Mater. Lett., 2014, 130: 236 | [9] | Wang N, Chen H, Kuo K H.Two-dimensional quasicrystal with eightfold rotational symmetry[J]. Phys. Rev. Lett., 1987, 59: 1010 | [10] | Cao W, Ye H Q, Kuo K H.A new octagonal quasicrystal and related crystalline phases in rapidly solidified Mn4Si[J]. Phys. Status Solidi, 1988, 107A: 511 | [11] | Ma X L, Kuo K H.Decagonal quasicrystal and related crystalline phases in slowly solidified Al-Co alloys[J]. Metall. Trans., 1992, 23A: 1121 | [12] | Naumovi? D, Aebi P, Schlapbach L, et al.Formation of a stable decagonal quasicrystalline Al-Pd-Mn surface layer[J]. Phys. Rev. Lett., 2001, 87: 195506 | [13] | Abe E, Tsai A P.Structure of a metastable Al3Ni decagonal quasicrystal: Comparison with a highly perfect Al72Ni20Co8[J]. J. Alloys Compd., 2002, 342: 96 | [14] | Li H, Ma H K, Hou L G, et al.Shield-like tile and its application to the decagonal quasicrystal-related structures in Al-Cr-Fe-Si alloys[J]. J. Alloys Compd., 2017, 701: 494 | [15] | Ishimasa T, Nissen H U, Fukano Y.New ordered state between crystalline and amorphous in Ni-Cr particles[J]. Phys. Rev. Lett., 1985, 55: 511 | [16] | Conrad M, Krumeich F, Harbrecht B.A dodecagonal quasicrystalline chalcogenide[J]. Angew. Chem. Int. Ed., 1998, 37: 1383 | [17] | Ye X C, Chen J, Irrgang M E, et al.Quasicrystalline nanocrystal superlattice with partial matching rules[J]. Nat. Mater., 2017, 16: 214 | [18] | Kuo K H.Quasiperiodic Crystals [M]. Hangzhou: Zhejiang Science & Technology Press, 2004: 130(郭可信. 准晶研究 [M]. 杭州: 浙江科学技术出版社, 2004: 130) | [19] | Kuo K H.Crystallographic features of quasicrystals[J]. Prog. Chem., 1994, 6: 266(郭可信. 准晶的晶体学特征 [J]. 化学进展, 1994, 6: 266) | [20] | Abe E, Yamamoto A.Structure of an approximant crystal in Ni-rich Al71Ni22Co7[J]. Philos. Mag., 2011, 91: 2617 | [21] | Ye H Q, Wang D N, Kuo K H. Fivefold symmetry in real and reciprocal spaces[J]. Ultramicroscopy, 1985, 16: 273 | [22] | Ye H Q.Periodic and aperiodic arrangements of icosahedral columns in pentagonal Frank-Kasper phases and analogs [J]. Mater. Sci. Forum, 1987, 22-24: 103 | [23] | Zhou D S, Ye H Q, Li D X, et al.Microdomain structure displaying apparent decagonal symmetry[J]. Phys. Rev. Lett., 1988, 60: 2180 | [24] | Xie H B, Pan H C, Ren Y P, et al.New structured laves phase in the Mg-In-Ca system with nontranslational symmetry and two unit cells[J]. Phys. Rev. Lett., 2018, 120: 085701 | [25] | Xie H B, Pan H C, Ren Y P, et al.Self-assembly of two unit cells into a nanodomain structure containing five-fold symmetry[J]. J. Phys. Chem. Lett., 2018, 9: 4373 | [26] | Vainshtein B.K. Fundamentals of Crystals: Symmetry, and Methods of Structural Crystallography[M]. 1994: 1 | [27] | Cui Y H.Development of crystal symmetry theory in last three hundred years[J]. Explor. Nat., 1984,(4): 92(崔云昊. 晶体对称理论三百年 [J]. 大自然探索, 1984, (4): 92) | [28] | Chen J Z.Discovery and development of crystallography and quasicrystallography[J]. J. China Univ. Geosci., 1993, 18(S1): 1(陈敬中. 晶体学、准晶体学的发生和发展 [J]. 中国地质大学学报, 1993, 18(S1): 1) | [29] | Kroto H W, Heath J R, Obrien S C, et al.C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162 | [30] | Bednorz J G, Mullerk A.Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys.-Condensed Matter, 1986, 64B: 189 | [31] | Takakura H, Gomez C P, Yamamoto A, et al.Atomic structure of the binary icosahedral Yb-Cd quasicrystal[J]. Nat. Mater., 2007, 6: 58 | [32] | Abe E.Electron microscopy of quasicrystals-where are the atoms?[J]. Chem. Soc. Rev., 2012, 41: 6787 | [33] | Flicker F.One-dimensional quasicrystals from incommensurate charge order[J]. Phys. Rev. Lett., 2015, 115: 236401 | [34] | He Z B, Wei D X, Shen X, et al.Approximants of Al-Cr-Fe-Si decagonal quasicrystals described by single structural block[J]. J. Alloys Compd., 2015, 647: 797 | [35] | Sinha A K.Topologically close-packed structures of transition metal alloys[J]. Prog. Mater. Sci., 1972, 15: 81 | [36] | Liu C T, Zhu J H, Brady M P, et al.Physical metallurgy and mechanical properties of transition-metal Laves phase alloys[J]. Intermetallics, 2000, 8: 1119 | [37] | Kirkland E J, Loane R F, Silcox J.Simulation of annular dark field stem images using a modified multislice method[J]. Ultramicroscopy, 1987, 23: 77 | [38] | Muller D A.Structure and bonding at the atomic scale by scanning transmission electron microscopy[J]. Nat. Mater., 2009, 8: 263 | [39] | Nie J F.Precipitation and hardening in magnesium alloys[J]. Metall. Mater. Trans., 2012, 43A: 3891 | [40] | Sturkey L, Clark J B.Mechanism of age-hardening in magnesium zinc alloys[J]. J. Inst. Met., 1959, 88: 177 | [41] | Gallot J, Guinier A, Lal K, et al.Etude aus rayons X des phenomenes de precipitation dans un alliage magnesium-zinc a 6% de zinc[J]. C.R. Hebd. Seances Acad. Sci., 1964, 258: 2818 | [42] | Gallot J, Graf R.Nouvelles observations aux rayon X et au microscope electronique sur la phase transitoire apparaissant dans l'alliage magnesium-zinc a 6% de zinc[J]. C.R. Hebd. Seances Acad. Sci., 1965, 261: 728 | [43] | Chun J S, Bryne J G.Precipitate strengthening mechanisms in magnesium zinc alloy single crystals[J]. J. Mater. Sci., 1969, 4: 861 | [44] | Wei L Y, Dunlop G L, Westengen H.Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys[J]. Metall. Mater. Trans., 1995, 26A: 1705 | [45] | Rokhlin L L. Oreshkina A A.Research into the structure of a metastable phase formed during the breakdown of a supersaturated solution in magnesium-zinc alloys[J]. Fiz. Met. Metalloved., 1988, 66: 559 | [46] | Gao X, Nie J F.Characterization of strengthening precipitate phases in a Mg-Zn alloy[J]. Scr. Mater., 2007, 56: 645 | [47] | Rosalie J M, Somekawa H, Singh A, et al.Structural relationships among MgZn2 and Mg4Zn7 phases and transition structures in Mg-Zn-Y alloys[J]. Philos. Mag., 2010, 90: 3355 | [48] | Langelier B, Korinek A, Donnadieu P, et al.Improving precipitation hardening behavior of Mg-Zn based alloys with Ce-Ca microalloying additions[J]. Mater. Charact., 2016, 120: 18 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|