Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 293-300    DOI: 10.11900/0412.1961.2017.00462
Orginal Article Current Issue | Archive | Adv Search |
Chemical Units in Solid Solutions andAlloy Composition Design
Chuang DONG1(), Dandan DONG2, Qing WANG1
1 Key Laboratory for Materials Modification by Laser, Ion and Electron Beam, Ministry of Education,Dalian University of Technology, Dalian 116024, China
2 College of Physical Science and Technology, Dalian University, Dalian 116622, China
Cite this article: 

Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design. Acta Metall Sin, 2018, 54(2): 293-300.

Download:  HTML  PDF(1254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Industrial alloys all have specific chemical compositions as standardized in specifications. Understanding the structural origin of special compositions for these solid-solution alloys is significant to shortening the development of new industrial alloys. It is well accepted that all alloys are based on solid solutions characterized by chemical short-range ordering. Previously it was only possible to describe the deviation of solute distribution from average mode in a statistical manner. The lack of an accurate structural tool to address the characteristic short-range-order structures constitutes the major obstacle in establishing an effective structural model that allows precise composition design for alloys. Since alloys with good comprehensive performance do have specific chemical compositions, their compositions should correspond to molecule-like specific structural units. After a long effort of more than a decade, we have developed a new structural tool, so-called the cluster-plus-glue-atom model, to address any short-range-ordered structures. In particular, solid solutions can be understood as being constructed from the packing of special chemical units covering only the nearest-neighbor cluster and a few glue atoms located at the next outer shell, expressed in molecule-like cluster formula [cluster] (glue atoms). Such units represent the smallest particles that are representative of the whole structures, just like molecules do for chemical substances. After introducing Friedel oscillation, the cluster-plus-glue-atom model is turned into the cluster-resonance model that provides also the inter-cluster packing modes. Ideal atomic density is hence obtained which is only proportional to the number of atoms in the unit and the cube of the cluster radius. The calculation of chemical unit is then possible and is conducted in typical binary Cu-based industrial alloys. The calculated formulas give chemical composition that highly agree with the most popular alloy specifications. The work demonstrates its high potential for developing chemically complex alloys.

Key words:  chemical unit      cluster-plus-glue-atom model      solid solution      short-range order      Cu-based industrial alloy     
Received:  02 November 2017     
Fund: Supported by National Natural Science Foundation of China (No.11674045)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00462     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/293

Fig.1  Pair distribution function g(r), with the location zones of the nearest-neighbor and glue atoms being labeled (a), and the corresponding effective electronic potential Φ(r)∝-sin(2kFr)/r3 arising from Friedel oscillation (b) (rn and rn+0.5 mark respectively the central positions of the negative and positive potential zones; the radial distance r is scaled with Friedel wavelength λFr)
Fig.2  Ideal spherical-periodicity packing of clusters in fcc structure, where neighboring cuboctahedral clusters are located at <3/2, 1, 1/2>a position with the distance of r3=2.6r1, a being the lattice constant of the base fcc lattice
System ΔH Cluster Glue atoms AxBy Composition Composition Alloy specification
kJmol-1 formula %
Cu-Zn -6 [Zn-Cu12] 1.28x+y=5.12 [Zn-Cu12]Zn4 70.0Cu-30.0Zn C26000 70Cu-30Zn
Cu-Ni +2 [Cu-Cu12] 0.93x+y=3.22 [Cu-Cu12]Ni2Cu1 88.3Cu-11.7Ni C70600 90Cu-10Ni
Cu-Al -1 [Al-Cu12] 1.39x+y=5.85 [Al-Cu12]Al2Cu3 92.2Cu-7.8Al C60800 92Cu-8Al
Cu-Be 0 [Cu-Cu12] 0.69x+y=3.22 [Cu-Cu12]Be2Cu2 98.1Cu-1.9Be C17200 98Cu-2Be
Cu-Sn +7 [Cu-Cu12] 1.78x+y=3.22 [Cu-Cu12]Sn1Cu1 88.2Cu-11.8Sn C90800 88Cu-12Sn
Table 1  Optimum chemical units of Cu-based commercial alloys
[1] Tammann G.über eine farblose form des quecksilberjodides[J]. Z. Anorg. Chem., 1919, 109: 213
[2] Johansson C, Linde J.R?ntgenographische bestimmung der atomanordnung in den mischkristallreihen Au-Cu und Pd-Cu[J]. Ann. Phys., 1925, 383: 439
[3] Bradley A J, Jay A.The formation of superlattices in alloys of iron and aluminium[J]. Proc. R. Soc. London, 1932, 136A: 210
[4] Bragg W L, Williams E J.The effect of thermal agitation on atomic arrangement in alloys[J]. Proc. R. Soc. London, 1934, 145A: 699
[5] Williams E J.The effect of thermal agitation on atomic arrangement in alloys. III[J]. Proc. R. Soc. London, 1935, 152A: 231
[6] Bethe H A.Statistical theory of superlattices[J]. Proc. R. Soc. London, 1935, 150A: 552
[7] Cowley J M.An approximate theory of order in alloys[J]. Phys. Rev., 1950, 77: 669
[8] Cowley J M.Short-and long-range order parameters in disordered solid solutions[J]. Phys. Rev., 1960, 120: 1648
[9] Cowley J.Short-range order and long-range order parameters[J]. Phys. Rev., 1965, 138: A1384
[10] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys, 2007, 40D: R273
[11] Dong D D.Composition origin of metallic glasses and solid solution alloys: Short-range-order structural unit [D]. Dalian: Dalian University of Technology, 2017(董丹丹. 金属玻璃和固溶体合金的成分根源: 近程序结构单元 [D]. 大连: 大连理工大学, 2017)
[12] Zhang J, Wang Q, Wang Y M, et al.Revelation of solid solubility limit Fe/Ni= 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model[J]. J. Mater. Res., 2010, 25: 328
[13] Li F W, Qiang J B, Wang Y M, et al.Revisiting Al-Ni-Zr bulk metallic glasses using the 'cluster-resonance' model[J]. Chin. Sci. Bull., 2011, 56: 3902
[14] Dong D D, Zhang S, Wang Z J, et al.Composition interpretation of binary bulk metallic glasses via principal cluster definition[J]. Mater. Des., 2016, 96: 115
[15] Luo L J, Chen H, Wang Y M, et al.24 electron cluster formulas as the 'molecular' units of ideal metallic glasses[J]. Philos. Mag., 2014, 94: 2520
[16] Dong D D, Dong C.Composition interpretation procedures of bulk metallic glasses via example of Cu64Zr36[J]. J. Non-Cryst. Solids, 2017, 460: 125
[17] Mackay A L, Finney J L.Structuration[J]. J. Appl. Crystallogr., 1973, 6: 284
[18] Chen H, Qiang J B, Wang Q, et al.A cluster-resonance criterion for Al-TM quasicrystal compositions[J]. Isr. J. Chem., 2011, 51: 1226
[19] Hume-Rothery W, Smallman R E, Haworth C W.The Structure of Metals and Alloys[M]. London: The Institute of Metals, 1969: 1
[20] Cahn R W.Homo or hetero?[J]. Nature, 1978, 271: 407
[21] Jones H.Notes on work at the University of Bristol, 1930-7[J]. Proc. R. Soc. London, 1980, 371A: 52
[22] Friedel J.Electronic structure of primary solid solutions in metals[J]. Adv. Phys., 1954, 3: 446
[23] Li Z Z.Solid State Theory [M]. Beijing: Higher Education Press, 2002: 1(李正中. 固体理论[M]. 北京: 高等敎育出版社, 2002: 1)
[24] Friedel J.Metallic alloys[J]. Il Nuovo Cimento (1955-1965), 1958, 7: 287
[25] Dong D D, Zhang S, Wang Z R, et al.Nearest-neighbor coordination polyhedral clusters in metallic phases defined using Friedel oscillation and atomic dense packing[J]. J. Appl. Crystallogr., 2015, 48: 2002
[26] Waseda Y, Suzuki K.Atomic distribution and magnetic moment in liquid iron by neutron diffraction[J]. Phys. Status Solidi, 1970, 39B: 669
[27] Mauro N A, Bendert J C, Vogt A J, et al.High energy x-ray scattering studies of the local order in liquid Al[J]. J. Chem. Phys., 2011, 135: 044502
[28] Abrikosov I A, Niklasson A M N, Simak S I, et al. Order-N Green's function technique for local environment effects in alloys[J]. Phys. Rev. Lett., 1996, 76: 4203
[29] Stolz U, Arpshofen I, Sommer F, et al.Determination of the enthalpy of mixing of liquid alloys using a high-temperature mixing calorimeter[J]. J. Phase Equil., 1993, 14: 473
[30] Baker H, Okamoto H.Alloy phase diagrams[M]. ASM International: ASM Handbook, 1992, 3: 501
[31] Metals A S F, Davis J R. Properties and selection: Nonferrous alloys and special-purpose materials[M]. ASM International: ASM Handbook, 2009: 1
[32] Reinhard L, Sch?nfeld B, Kostorz G, et al.Short-range order in α-brass[J]. Phys. Rev., 1990, 41: 1727
[33] Gaskell P H.On the density of transition metal-metalloid glasses[J]. Acta Metall., 1981, 29: 1203
[34] Aalders J, Van Dijk C, Radelaar S.Neutron scattering study of short-range clustering in CuNi (Fe) alloys[J]. J. Phys. Met. Phys., 1984, 14F: 2801
[35] Massalski T.The Al-Cu (aluminum-copper) system[J]. Bull. Alloy Phase Diagr., 1980, 1: 27
[36] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans., 2005, 46: 2817
[37] Koo Y M, Cohen J B.The structure of GP zones in Cu-10.9at.% Be[J]. Acta Metall., 1989, 37: 1295
[38] Chakrabarti D J, Laughlin D E, Tanner L E.The Be-Cu (beryllium-copper) system[J]. Bull. Alloy Phase Diagr., 1987, 8: 269
[1] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[2] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[3] YU Qian, CHEN Yujie, FANG Yan. Heterogeneity in Chemical Distribution and Its Impact in High-Entropy Alloys[J]. 金属学报, 2021, 57(4): 393-402.
[4] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[5] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[6] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[7] Yu ZHANG, Qing WANG, Honggang DONG, Chuang DONG, Hongyu ZHANG, Xiaofeng SUN. Nickel-Based Single-Crystal Superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) Designed by Cluster-Plus-Glue-Atom Model and Their 1000 h Long-Term Ageing Behavior at 900 ℃[J]. 金属学报, 2018, 54(4): 591-602.
[8] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[9] Hongwei ZHANG,Xuezhi QIN,Xiaowu LI,Lanzhang ZHOU. Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content[J]. 金属学报, 2017, 53(6): 684-694.
[10] Zongyue BI,Jun YANG,Haizhang LIU,Wanpeng ZHANG,Yaobin YANG,Lei TIAN,Xiaojiang HUANG. INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES[J]. 金属学报, 2016, 52(8): 1017-1024.
[11] Xiaohong YOU,Ganggang WANG,Jun WANG,Tao XU,Hongyu ZHANG,Hua WEI. EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS[J]. 金属学报, 2016, 52(2): 161-167.
[12] LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL[J]. 金属学报, 2015, 51(4): 385-392.
[13] YANG Fuqiang, SONG Renbo, SUN Ting, ZHANG Leifeng, ZHAO Chao, LIAO Baoxin. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(8): 897-904.
[14] JIE Jinchuan, ZOU Chunming, WANG Hongwei, WEI Zunjie. MECHANICAL BEHAVIOR OF Al-20Mg ALLOY SOLIDIFIED UNDER HIGH PRESSURE[J]. 金属学报, 2014, 50(8): 971-978.
[15] SHANG Hailong, LIU Wenqing, DONG Yujun, ZHANG Anming, MA Bingyang, LI Geyang. 3D ATOM PROBE CHARACTERIZATION OF MICRO-STRUCTURE OF TiBx/Al SUPERSATURATED SOLID SOLUTE COMPOSITE FILMS[J]. 金属学报, 2014, 50(4): 395-399.
No Suggested Reading articles found!