Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 1017-1024    DOI: 10.11900/0412.1961.2015.00615
Orginal Article Current Issue | Archive | Adv Search |
INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES
Zongyue BI1,2(),Jun YANG1,2,Haizhang LIU1,2,Wanpeng ZHANG1,2,Yaobin YANG1,2,Lei TIAN1,2,Xiaojiang HUANG1,2
1 National Engineering Technology Research Center for Petroleum and Natural Gas Tubular Goods, Baoji 721008, China.
2 Steel Pipe Research Institute of Baoji Petroleum Steel Pipe Co., Ltd., Baoji 721008, China
Download:  HTML  PDF(1258KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium/steel clad material with excellent mechanical properties and corrosion resistance has important application in storage and transportation equipment of oil and gas. Due to the metallurgical incompatibility of titanium and steel, the mechanical properties of weld joint would completely lose when the brittle intermetallic phase TixFey and TiC appeared in the fusion welding process. Therefore, the gas tungsten arced welding (TIG), metal inert-gas welding (MIG) and metal active-gas welding (MAG) with V/Cu composite filler metals for butt joint in this study was carried out on TA1/X65 pipeline steel clad plates with thickness 16 mm ( titanium cladding with thickness 2 mm, X65 pipeline steel with thickness 14 mm). The microstructure, interface element distribution, main phase, microhardness distribution on cross section and mechanical properties of butt welds were investigated by using OM, XRD, EDS element mapping, microhardness and tensile test. The results indicate that the design of “U-type” circular groove advantageous to the MIG of Cu transition-metals, because of the “U-type” circular groove does not cause stress concentration and crack initiation. The deposited metal of Ti, V, Cu and Fe have obvious zoning, interdiffusion melting phenomenon is not severe, and by using solid solution phases to transit zonings of deposited metal. The microstructure of Ti and V transition interface was composed of Ti-based solid solution, the microstructure of V and Cu transition interface was composed of V-based solid solution, and the microstructure of Cu and Fe transition interface was composed of Cu-based solid solution. The high hardness region of butt weld cross section appeared in the Ti/V transition-interface and V/Cu transition-interface, the hardness value was respectively 326 HV10 and 336 HV10, and weakened the ductility of transition interfacial layer. A joint with a tensile strength of 546 MPa, mainly of that of the carbon steel was obtained.

Key words:  TIG+MIG+MAG welding      TA1/X65 pipeline steel clad plate      intermetallic compound      V/Cu composite transition      solid solution     
Received:  30 November 2015     

Cite this article: 

Zongyue BI,Jun YANG,Haizhang LIU,Wanpeng ZHANG,Yaobin YANG,Lei TIAN,Xiaojiang HUANG. INVESTIGATION ON THE WELDING PROCESS AND MICROSTRUCTURE AND MECHANICAL PROPERTY OF BUTT JOINTS OF TA1/X65 CLAD PLATES. Acta Metall Sin, 2016, 52(8): 1017-1024.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00615     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/1017

Mater Mp / K Sh / (Jg-1K-1) Tc / (Wm-1K-1) Lec / (10-6 K-1) An Aw Ar / nm Lattice type
Fe 1810.15 481.5 66.7 11.76 26 55.85 0.127 bcc α-Fe, fcc γ-Fe, bcc δ-Fe
Cu 1357.15 376.8 359.2 16.60 29 63.54 0.128 bcc
V 2175.15 498.0 30.7 8.30 23 50.94 0.192 bcc
Ti 1950.15 539.1 13.8 8.20 22 47.87 0.145 hcp α-Ti, bcc β-Ti
Table1  Physical and chemical properties of Fe, Cu, V and Ti
Filler metal Welding
method
Nozzle size
mm
Voltage
V
Current
A
Wire feeding speed
(mmmin-1)
Welding speed
(mmmin-1)
Nozzle gas flow
(Lmin-1)
Pure Ti TIG 10 9.6 100 700 60 15~20
Pure V TIG 10 9.6 120 500 100 15~20
Pure Cu MIG 20 16.0 125 4572 350 20~25
Steel welding MAG
20 20.5 180 5080 300 20~25
Mixed gas:
(80%Ar +20%CO2)
20 24.5 225 6350 200
20 26.4 265 7620 180
Table 2  Welding parameters
Fig.1  Schematic of weld groove design and welding sequence
Fig.2  Macrostructure of cross section of Ti/steel clad plate joint (Area 1—Ti filling and capping layer (bright white), Area 2—V intermediate layer (blue-black), Area 3—Cu buffer layer (dark brown), Area 4—X65 steel weld (light gray), rectangles I~IV—areas for EDS, black spots S~E—microhardness test points)
Fig.3  OM images of various regions in weld in Fig.2

(a) explosive composite interface (b) heat affected zone of Ti (c) area 1 (d) transition interface of areas 1 and 2 (e) area 2 (f) transition interface of areas 2 and 3 (g) area 3 (h) transition interface of areas 3 and 4

Area Phase Atomic fraction / % Potential phase
Fe Ti Cu V
2 A 2.86 9.06 4.60 83.48 V(s,s)
B 1.09 6.67 90.06 2.18 Cu(s,s)
3 C 5.14 0 93.40 1.46 Cu(s,s)
D 13.65 0 9.92 76.53 V(s,s)
Table 3  Chemical compositions of phases A~D marked in Fig.3
Fig.4  XRD spectra of weld zones in joint in Fig.2 (s,s—solid solution)

(a) transition interface of areas 1 and 2 (b) transition interface of areas 2 and 3 (c) transition interface of areas 3 and 4

Fig.5  EDS element mappings of the observation zones I (a), II (b), III (c) and IV (d) in Fig.2
Fig.6  Microhardness distribution and corresponding microstructures (insets) of the weld cross section in the vertical line in Fig.2 (a) and stress-elongation curves and fractured samples (insets) for tensile test of the joint (b)
Table 4  Chemical compositions of observation zones I~IV
[1] Zhang X Y, Zhao Y Q, Bai C G.Titanium Alloys and Their Applications .Beijing: Chemical Industry Press, 2005: 287
[1] (张喜燕, 赵永庆, 白晨光. 钛合金及应用. 北京: 化学工业出版社, 2005: 287)
[2] Yuan X J, Sheng G M, Qin B.Mater Charact, 2008; 59: 930
[3] Li G Q.Welded Pipe Tube, 2011; 34(11): 39
[3] (李国庆. 焊管, 2011; 34(11): 39)
[4] Xu G Z.Welded Pipe Tube, 2009; 32(11): 70
[4] (许贵芝. 焊管, 2009; 32(11): 70)
[5] Yang K, Wang Y J, Yun H T, Bai Y, Fu L.Welded Pipe Tube, 2015; 38(7): 6
[5] (杨凯, 王永军, 云海涛, 白颖, 傅莉. 焊管, 2015; 38(7): 6 )
[6] Sheng C C, Master Thesis Jiangsu University of Science and Technology, Zhenjiang, 2008
[6] (盛长城. 江苏科技大学硕士学位论文, 镇江, 2008)
[7] Li P, Li J L, Xiong J T, Zhang F S.J Aeronaut Mater, 2010; 30(5): 25
[7] (李鹏, 李京龙, 熊江涛, 张赋升. 航空材料学报, 2010; 30(5): 25)
[8] Liu P, Lu M, Ji X W, Huang Q, Dai R X.Ordnance Mater Sci Eng, 2011; 34(3): 14
[8] (刘鹏, 陆明, 冀鑫炜, 黄钦, 戴汝迅. 兵器材料科学与工程, 2011; 34(3): 14)
[9] Yan W, Master Thesis Northeastern University Shenyang, 2006
[9] (闫伟. 东北大学硕士学位论文, 沈阳, 2006)
[1] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[2] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[3] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[4] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[5] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[6] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[7] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[8] Chuang DONG, Dandan DONG, Qing WANG. Chemical Units in Solid Solutions andAlloy Composition Design[J]. 金属学报, 2018, 54(2): 293-300.
[9] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[10] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
[11] Hongwei ZHANG,Xuezhi QIN,Xiaowu LI,Lanzhang ZHOU. Incipient Melting Behavior and Its Influences on the Mechanical Properties of a Directionally Solidified Ni-Based Superalloy with High Boron Content[J]. 金属学报, 2017, 53(6): 684-694.
[12] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[13] Dawei WANG,Shichao XIU. Effect of Bonding Temperature on the Interfacial Micro-structure and Performance of Mild Steel/Austenite Stainless Steel Diffusion-Bonded Joint[J]. 金属学报, 2017, 53(5): 567-574.
[14] Liangshun LUO,Tong LIU,Yanning ZHANG,Yanqing SU,Jingjie GUO,Hengzhi FU. MICROSTRUCTURE EVOLUTION AND GROWTH BE-HAVIORS OF FACETED PHASE IN DIRECTIONALLY SOLIDIFIED Al-Y ALLOYS I. Microstructure Evolution of Directionally Solidified Al-15%Y Hypereutectic Alloy[J]. 金属学报, 2016, 52(7): 859-865.
[15] Xiaohong YOU,Ganggang WANG,Jun WANG,Tao XU,Hongyu ZHANG,Hua WEI. EFFECT OF SOLID SOLUTION TREATMENT ONMICROSTRUCTURE AND MECHANICALPROPERTIES OF HOT-PRESS CoCrW ALLOYS[J]. 金属学报, 2016, 52(2): 161-167.
No Suggested Reading articles found!