Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 301-313    DOI: 10.11900/0412.1961.2017.00414
Orginal Article Current Issue | Archive | Adv Search |
Modeling and Simulation of Hydrogen Behavior in Tungsten
Hongbo ZHOU(), Yuhao LI, Guanghong LU
School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
Cite this article: 

Hongbo ZHOU, Yuhao LI, Guanghong LU. Modeling and Simulation of Hydrogen Behavior in Tungsten. Acta Metall Sin, 2018, 54(2): 301-313.

Download:  HTML  PDF(4254KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on national strategic needs for fusion energy, our group have investigated the behavior of H isotopes including dissolution, diffusion, accumulation and bubble formation in W using a first-principles method in combination with molecular dynamic method. It is found that the dissolution and nucleation of H in defects follow an "optimal charge density" rule, and a vacancy trapping mechanism for H bubble formation in W has been revealed. An anisotropic strain enhanced effect of H solubility due to H accumulation in W has been found, and a cascading effect of H bubble growth has been proposed. Noble gases/alloying elements doping in W has been proposed to suppress H bubble formation, because these dopants can change the distribution of charge density in defects and block the formation and nucleation of H2 molecule. These works are reviewed in this paper. Our calculations will provide a good reference for the design, preparation and application of W-PFM under a fusion environment.

Key words:  W,H,plasma facing material      nuclear fusion energy      modelling and simulation     
Received:  29 September 2017     
Fund: Supported by National Natural Science Foundation of China (No.11675011) and National Science Fund for Distinguished Young Scholars (No.51325103)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00414     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/301

Fig.1  Potential sites of H in W[29]
(a) octahedral interstitial site (OIS) (b) tetrahedral interstitial site (TIS) (c) substitutional site (SS)
Energy Our calculation[21] Previous study[30]
TIS OIS TIS OIS
ZPE 0.263 0.256 0.253 -
Solution energy (with ZPE) 1.00 1.38 1.00 -
Solution energy (without ZPE) 0.88 1.26 0.89 1.29
Table 1  Zero-point energy (ZPE) and solution energies of H at TIS and OIS in W[21,30]
Fig.2  Most stable configurations and corresponding distances of multi-H atoms in bulk W[33]
Fig.3  H solution energies at the TIS and OIS as a function of applied strain[37]
(a) isotropic strain (b) anisotropic strain (c) strain induced H position change starting at the TIS-I site: H from TIS-I to OIS-I under compressive strain, and H from TIS-I to OIS-II under tensile strain
Fig.4  Schematic of the strain-triggered cascading effect on H bubble growth in W[16]
Fig.5  Ideal tensile strengths of W in the [001], [110] and [111] directions (a)[38] and effects of H on the ideal tensile strength of W in the [001] direction (b)[39]
Fig.6  H trapping energy as a function of the number of H embedded at the monovacancy in W[41,42]
Fig.7  Atomic configurations and the isosurface of optimal charge for H for different numbers of embedded H atoms at the monovacancy (a~f)[41]
Fig.8  H diffusion energy profiles and diffusion paths (arrows) in W [41]
(a) H diffusion from one TIS to another in intrinsic W (b) H diffusion toward an empty vacancy. Site 4 is one of the 6 most stable sites at the vacancy (c) H diffusion toward a vacancy occupied with 6 H. Sites 1~3, 2' and 3' are the TISs with different distances from vacancy. Site 4' is one of the most stable sites for the 7th H
Fig.9  Isosurface of optimal charge for H for different numbers of embedded H atoms in a W grain boundary[49]
Fig.10  Trapping energies per H as a function of the number of H atoms trapped by the He-V complex in W (a) and atomic configuration of the (HeV)H12 complex in W (b)[21]
[1] Dresselhaus M S, Thomas I L.Alternative energy technologies[J]. Nature, 2001, 414: 332
[2] Chu S, Majumdar A.Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488: 294
[3] Ongena J, Van Oost G.Energy for future centuries: Prospects for fusion power as a future energy source[J]. Fusion Sci. Technol., 2010, 57: 3
[4] Lehnert B.Half a century of fusion research towards ITER[J]. Phys. Scr., 2012, 87: 018201
[5] Barabash V, The ITER International Team, Peacock A, et al. Materials challenges for ITER—Current status and future activities[J]. J. Nucl. Mater., 2007, 367: 21
[6] Zinkle S J, Busby J T.Structural materials for fission & fusion energy[J]. Mater. Today, 2009, 12: 12
[7] Zinkle S J, Snead L L.Designing radiation resistance in materials for fusion energy[J]. Annu. Rev. Mater. Res., 2014, 44: 241
[8] Knaster J, Moeslang A, Muroga T.Materials research for fusion[J]. Nat. Phys., 2016, 12: 424
[9] Linsmeier C, Rieth M, Aktaa J, et al.Development of advanced high heat flux and plasma-facing materials[J]. Nucl. Fusion, 2017, 57: 092007
[10] Ueda Y, Schmid K, Balden M, et al.Baseline high heat flux and plasma facing materials for fusion[J]. Nucl. Fusion, 2017, 57: 092006
[11] Buzi L, De Temmerman G, Unterberg B, et al.Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention[J]. J. Nucl. Mater., 2015, 463: 320
[12] Linsmeier Ch, Unterberg B, Coenen J W, et al.Material testing facilities and programs for plasma-facing component testing[J]. Nucl. Fusion, 2017, 57: 092012
[13] Zibrov M, Balden M, Morgan T W, et al.Deuterium trapping and surface modification of polycrystalline tungsten exposed to a high-flux plasma at high fluences[J]. Nucl. Fusion, 2017, 57: 046004
[14] Jia Y Z, Liu W, Xu B, et al.Subsurface deuterium bubble formation in W due to low-energy high flux deuterium plasma exposure[J]. Nucl. Fusion, 2017, 57: 034003
[15] Dudarev S L.Density functional theory models for radiation damage[J]. Annu. Rev. Mater. Res., 2013, 43: 35
[16] Lu G H, Zhou H B, Becquart C S.A review of modelling and simulation of hydrogen behaviour in tungsten at different scales[J]. Nucl. Fusion, 2014, 54: 086001
[17] Kresse G, Hafner J.Ab initio molecular dynamics for liquid metals[J]. Phys. Rev., 1993, 47B: 558
[18] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[19] Perdew J P, Wang Y.Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev., 1992, 45B: 13244
[20] Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[21] Zhou H B, Liu Y L, Jin S, et al.Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W[J]. Nucl. Fusion, 2010, 50: 115010
[22] Counts W A, Wolverton C, Gibala R.First-principles energetics of hydrogen traps in α-Fe: Point defects[J]. Acta Mater., 2010, 58: 4730
[23] Fernandez N, Ferro Y, Kato D.Hydrogen diffusion and vacancies formation in tungsten: Density functional theory calculations and statistical models[J]. Acta Mater., 2015, 94: 307
[24] Plimpton S.Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995, 117: 1
[25] Li X C, Shu X, Liu Y N, et al.Modified analytical interatomic potential for a W-H system with defects[J]. J. Nucl. Mater., 2011, 408: 12
[26] Li X C, Shu X L, Liu Y N, et al.Analytical W-He and H-He interatomic potentials for a W-H-He system[J]. J. Nucl. Mater., 2012, 426: 31
[27] Wang L F, Shu X, Lu G H, et al.Embedded-atom method potential for modeling hydrogen and hydrogen-defect interaction in tungsten[J]. J. Phys.: Condens. Matter, 2017, 29: 435401
[28] Liu Y L, Zhang Y, Luo G N, et al. Structure, stability and diffusion of hydrogen in tungsten: A first-principles study [J]. J. Nucl. Mater., 2009, 390-391: 1032
[29] Li Y H, Zhou H B, Lu G H.Towards understanding the strong trapping effects of noble gas elements on hydrogen in tungsten[J]. Int. J. Hydrogen Energy, 2017, 42: 6902
[30] Kong X S, Wang S, Wu X, et al.First-principles calculations of hydrogen solution and diffusion in tungsten: Temperature and defect-trapping effects[J]. Acta Mater., 2015, 84: 426
[31] Liu Y N, Wu T F, Yu Y, et al.Hydrogen diffusion in tungsten: A molecular dynamics study[J]. J. Nucl. Mater., 2014, 455: 676
[32] Frauenfelder R.Solution and diffusion of hydrogen in tungsten[J]. J. Vac. Sci. Technol., 1969, 6: 388
[33] Qin S Y, Jin S, Sun L, et al.Hydrogen assisted vacancy formation in tungsten: A first-principles investigation[J]. J. Nucl. Mater., 2015, 465: 135
[34] Van A V, Filius H A, De Vries J, et al. Hydrogen exchange with voids in tungsten observed with TDS and PA [J]. J. Nucl. Mater., 1988, 155-157: 1113
[35] Shu W, Wakai E, Yamanishi T.Blister bursting and deuterium bursting release from tungsten exposed to high fluences of high flux and low energy deuterium plasma[J]. Nucl. Fusion, 2007, 47: 201
[36] Li W Y, Zhang Y, Zhou H B, et al.Stress effects on stability and diffusion of H in W: A first-principles study[J]. Nucl. Instrum. Meth. Phys. Res. Sec., 2011, 269B: 1731
[37] Zhou H B, Jin S, Zhang Y, et al.Anisotropic strain enhanced hydrogen solubility in bcc metals: The independence on the sign of strain[J]. Phys. Rev. Lett., 2012, 109: 135502
[38] Liu Y L, Zhou H B, Zhang Y, et al.The ideal tensile strength and deformation behavior of a tungsten single crystal[J]. Nucl. Instrum. Methods Phys. Res. Sec., 2009, 267B: 3282
[39] Liu Y L, Zhou H B, Jin S, et al.Effects of H on electronic structure and ideal tensile strength of W: A First-principles calculation[J]. Chin. Phys. Lett., 2010, 27: 127101
[40] Nielsen O H, Martin R M.Quantum-mechanical theory of stress and force[J]. Phys. Rev., 1985, 32B: 3780
[41] Liu Y L, Zhang Y, Zhou H B, et al.Vacancy trapping mechanism for hydrogen bubble formation in metal[J]. Phys. Rev., 2009, 79B: 172103
[42] Sun L, Jin S, Li X C, et al.Hydrogen behaviors in molybdenum and tungsten and a generic vacancy trapping mechanism for H bubble formation[J]. J. Nucl. Mater., 2013, 434: 395
[43] Sun L, Jin S, Zhou H B, et al.Critical concentration for hydrogen bubble formation in metals[J]. J. Phys.: Condens. Matter, 2014, 26: 395402
[44] Liu Y N, Ahlgren T, Bukonte L, et al.Mechanism of vacancy formation induced by hydrogen in tungsten[J]. AIP Adv., 2013, 3: 122111
[45] Qin S Y, Jin S, Niu L L, et al.The effect of hydrogen on the recombination of Frenkel pair in tungsten: A theoretical insight[J]. Sci. China Phys. Mech. Astron., 2017, 60: 067021
[46] Nguyen-Manh D, Horsfield A P, Dudarev S L.Self-interstitial atom defects in bcc transition metals: Group-specific trends[J]. Phys. Rev., 2006, 73B: 020101
[47] Haasz A A, Poon M, Davis J W. The effect of ion damage on deuterium trapping in tungsten [J]. J. Nucl. Mater., 1999, 266-269: 520
[48] González C, Panizo-Laiz M, Gordillo N, et al.H trapping and mobility in nanostructured tungsten grain boundaries: A combined experimental and theoretical approach[J]. Nucl. Fusion, 2015, 55: 113009
[49] Zhou H B, Liu Y L, Jin S, et al.Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism[J]. Nucl. Fusion, 2010, 50: 025016
[50] Zhou H B, Jin S, Zhang Y, et al.Effects of hydrogen on a tungsten grain boundary: A first-principles computational tensile test[J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 240
[51] Zhou H B, Jin S, Zhang Y, et al.First-principles study of carbon effects in a tungsten grain boundary: Site preference, segregation and strengthening[J]. Sci. China Phys. Mech. Astron., 2011, 54: 2164
[52] Yu Y, Shu X L, Liu Y N, et al.Molecular dynamics simulation of hydrogen dissolution and diffusion in a tungsten grain boundary[J]. J. Nucl. Mater., 2014, 455: 91
[53] Yu Y, Shu X L, Liu Y N, et al.Effect of hydrogen on grain boundary migration in tungsten[J]. Sci. China Phys. Mech. Astron., 2015, 58: 1
[54] Liu Y L, Gao A Y, Lu W, et al.Optimal electron density mechanism for hydrogen on the surface and at a vacancy in tungsten[J]. Chin. Phys. Lett., 2012, 29: 077101
[55] Sun L, Jin S, Lu G H, et al.High hydrogen retention in the sub-surfaces of tungsten plasma facing materials: A theoretical insight[J]. Scr. Metall., 2016, 122: 14
[56] Tokunaga K, Takayama M, Muroga T, et al.Depth profile analyses of implanted deuterium in tungsten by secondary ion mass spectrometry[J]. J. Nucl. Mater., 1995, 220: 800
[57] Roth J, Schmid K.Hydrogen in tungsten as plasma-facing material[J]. Phys. Scr., 2011, 145: 014031
[58] Nishijima D, Sugimoto T, Iwakiri H, et al.Characteristic changes of deuterium retention on tungsten surfaces due to low-energy helium plasma pre-exposure[J]. J. Nucl. Mater., 2005, 337: 927
[59] Baldwin M J, Doerner R P, Wampler W R, et al.Effect of He on D retention in W exposed to low-energy, high-fluence (D, He, Ar) mixture plasma[J]. Nucl. Fusion, 2011, 51: 103021
[60] Li Y H, Zhou H B, Jin S, et al.Strain-induced variation of electronic structure of helium in tungsten and its effects on dissolution and diffusion[J]. Comput. Mater. Sci., 2014, 95: 536
[61] Zhou H B, Liu Y L, Zhang Y, et al.First-principles investigation of energetics and site preference of He in a W grain boundary[J]. Nucl. Instrum. Methods Phys. Res. Sec., 2009, 267B: 3189
[62] Zhou H B, Ou X, Zhang Y, et al.Effect of carbon on helium trapping in tungsten: A first-principles investigation[J]. J. Nucl. Mater., 2013, 440: 338
[63] Wang X X, Zhang Y, Zhou H B, et al.Effects of niobium on helium behaviors in tungsten: A first-principles investigation[J]. Acta Phys. Sin., 2014, 63: 046103(王欣欣, 张颖, 周洪波等. 铌对钨中氦行为的影响的第一性原理研究[J]. 物理学报, 2014, 63: 046103)
[64] Zhou H B, Jin S, Shu X L, et al.Stress tensor: A quantitative indicator of effective volume and stability of helium in metals[J]. Europhys. Lett., 2011, 96: 66001
[65] Zhou H B, Wang J L, Jiang W, et al.Electrophobic interaction induced impurity clustering in metals[J]. Acta Mater., 2016, 119: 1
[66] Jin S, Liu Y L, Zhou H B, et al.First-principles investigation on the effect of carbon on hydrogen trapping in tungsten[J]. J. Nucl. Mater., 2011, 415: S709
[67] Zhou H B, Momanyi N K, Li Y H, et al.Paving a way to suppress hydrogen blistering by investigating the hydrogen-beryllium interaction in tungsten[J]. RSC Adv., 2016, 6: 103622
No related articles found!
No Suggested Reading articles found!