Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1605-1610    DOI: 10.3724/SP.J.1037.2011.00544
论文 Current Issue | Archive | Adv Search |
STUDY ON SmCo PERMANENT MAGNETS UNDER 350℃ MODERATE TEMPERATURES
WANG Qian, JIANG Chengbao
School of Materials Science and Engineering, Beihang University, Beijing 100191
Cite this article: 

WANG Qian JIANG Chengbao. STUDY ON SmCo PERMANENT MAGNETS UNDER 350℃ MODERATE TEMPERATURES. Acta Metall Sin, 2011, 47(12): 1605-1610.

Download:  PDF(565KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The magnetic properties of commercial 2∶17–type SmCo magnet is low at high temperature, despite good properties at room temperature and its application temperature is usually lower than 300 ℃. In recent years, significant progress has been made on the development of SmCo permanent magnets for high temperature applications. Despite the maximum operating temperature being up to 500 ℃, the magnets were found to have low magnetic properties at room temperature and 350 ℃. Thus, there has been a demand for developing permanent magnet materials with high properties at moderate temperatures below 350 ℃. The effect of Fe and Cu contents on the magnetic properties of Sm(CobalFexCuyZr0.03)7.5 (x=0.16—0.28, y=0.06, 0.08) magnets at room temperature and 350 ℃ have been systematically studied. The results show that with increasing Fe content, the intrinsic coercivity iHc gradually increases, reaching an optimal value of 2473 kA/m, and then drops rapidly at room temperature; the remanence Br rises monotonically with increasing Fe content. The intrinsic coercivity iHc increases with raising Cu at a constant Fe content. The absolute value of temperature coefficient of coercivity |β| rises monotonically with increasing Fe content, and decreases with increasing Cu content. Sm(CobalFe0.20Cu0.08Zr0.03)7.5 alloy is expected for potential applications at moderate temperatures below 350 ℃.
Key words:  2∶17–type SmCo permanent magnet      moderate temperature magnet      coercivity      magnetic property     
Received:  29 August 2011     
ZTFLH: 

TM273

 
Fund: 

Supported by National Natural Science Foundation of China (No.51071010), National High Technology Research and Development Program of China (No.2010AA03A401), Aviation Foundation of China (No.2009ZF51063) and Fundamental Research Funds for the Central Universities

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00544     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1605

[1] Zhou S Z. Rare Earth Permanent Magnetic Materials and Their Application. Beijing: Metallurgy Industry Press, 1995: 281

(周寿增. 稀土永磁材料及其应用. 北京: 冶金工业出版社, 1995: 281)

[2] Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F, Hadjipanayis G C. J Appl Phys, 1999; 85: 5660

[3] Tang W, Zhang Y, Gabay A M. J Magn Magn Mater, 2002; 242: 1335

[4] Yao Z, Jiang C B. IEEE Trans Magn, 2008; 44: 4578

[5] Yao Z, Li P P, Jiang C B. J Magn Magn Mater, 2009; 321: 203

[6] Hadjipanayis G C, Tang W, Zhang Y, Chui S T, Liu J F, Chen C, Kronmuller H. IEEE Trans Magn, 2000; 36: 3382

[7] Rabenberg L, Mishra R K, Thomas G. J Appl Phys, 1982; 53: 2389

[8] Raja K, Mishra, Thomas G. J Appl Phys, 1981; 52: 2517

[9] Tang W, Zhang Y, Hadjipanayis G C. J Magn Magn Mater, 2000; 221: 268

[10] Rong C B, Zhang H W, Zhang J, Du X B, Zhang S Y, Shen B G. J Appl Phys, 2004; 95: 1351

[11] Liu L L, Jiang C B. Appl Phys Lett, 2011; 98: 252504

[12] Chen Y Y, Hsieh C C, Lo S C, Chang W C, Chang H W, Chiou S H. J Appl Phys, 2011; 109: 07A748

[13] Feng H B, Chen H S, Guo Z H, Pan W, Zhu M G, Li W. J Appl Phys, 2011; 109: 07A763

[14] Peng L, Yang Q H, Zhang H W, Xu G L, Zhang M, Wang J D. J Rare Earths, 2008; 26: 378

[15] Guo Z H, Li W. Acta Metall Sin, 2002; 38: 866

(郭朝晖, 李卫. 金属学报. 2002; 38: 866)

[16] Liu J F, Ding Y, Hadjipanayis G C. J Appl Phys, 1999; 85: 1670

[17] Liu J F, Zhang Y, Dimitrov D, Hadjipanayis G C. J Appl Phys, 1999; 85: 2800

[18] Chui S T. J Magn Magn Mater, 2000; 217: 120

[19] Jiang C B, Feng G, Xu H B. Appl Phys Lett, 2002; 80: 1619

[20] Jiang C B, Liang T, Xu H B. Appl Phys Lett, 2002; 81: 2618

[21] Zhang Y, Tang W, Hadjipanayis G C. IEEE Trans Magn, 2001; 37: 2525

[22] Gutfleisch O, Muller K H, Khlopkov K, Wolf M, Yan A, Schafer R, Gemming T, Schultz L. Acta Mater, 2006; 54: 997

[23] Andrew S K. J Appl Phys, 1997; 81: 5609

[24] Liu S, Ray A E. IEEE Trans Magn, 1989; 25: 3785

[25] Li L Y, Yi J H, Huang B Y, Peng Y D. Acta Metall Sin, 2005; 41: 791

(李丽娅, 易健宏, 黄伯云, 彭元东. 金属学报. 2005; 41: 791)
[1] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[2] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[3] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[4] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[5] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[6] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[7] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[8] Yachao SUN, Minggang ZHU, Rui HAN, Xiaoning SHI, Nengjun YU, Liwei SONG, Wei LI. Magnetic Viscosity of Anisotropic Rare Earth Permanent Films[J]. 金属学报, 2018, 54(3): 457-462.
[9] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[10] Yaoxiang GENG,Xin LIN,Jianbing QIANG,Yingmin WANG,Chuang DONG. Dual-Cluster Characteristic and Composition Optimization of Finemet Soft Magnetic Nanocrystalline Alloys[J]. 金属学报, 2017, 53(7): 833-841.
[11] Shaoting GONG, Chengbao JIANG, Tianli ZHANG. Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets[J]. 金属学报, 2017, 53(6): 726-732.
[12] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[13] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[14] ZHAO Suling CHEN Jing WANG Yilong. INFLUENCE OF THE SHAPE OF SHIELDING FILLERS ON ELECTROMAGNETIC PROPERTIES OF Fe@Ag CORE–SHELL COMPOSITE PARTICLES[J]. 金属学报, 2012, 48(8): 977-982.
[15] CHAO Yuesheng, WANG Li, ZHANG Yanhui, ZHU Hanxian, LUO Liping. EFFECT OF LOW-TEMPERATURE VACUUM ANNEALING ON THE MAGNETIC PULSED AMORPHOUS Fe52Co34Hf7B6Cu1 ALLOY[J]. 金属学报, 2012, 48(6): 749-752.
No Suggested Reading articles found!