Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 307-312    DOI: 10.11900/0412.1961.2015.00233
Orginal Article Current Issue | Archive | Adv Search |
HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING
Gang LIU1(),Chao LI1,Ye MA1,Ruijun ZHANG1,Yongkai LIU1,Yuhui SHA2
1 Research Academy, Northeastern University, Shenyang 110819, China
2 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China
Cite this article: 

Gang LIU, Chao LI, Ye MA, Ruijun ZHANG, Yongkai LIU, Yuhui SHA. HEAT STABILITY AND SILICONIZING BEHAVIOR OF SURFACE NANOSTRUCTURE OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING. Acta Metall Sin, 2016, 52(3): 307-312.

Download:  HTML  PDF(4194KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Heat stability of nanostructure can be related to alloy element, in order to investigate the effect of external element diffusion, asymmetrical rolling was adopted to roll 3% non-oriented silicon steel to realize the surface nanocrystallization, heat-treatment with different parameters was carried out for the rolled sheet in vacuum and Si+1% (mass fraction) halide powder respectively, and different techniques were used to examine the microstructural evolution, phase transformation and Si distribution along the depth. Experimental results show that nanocrystallines about 10~20 nm in size with random orientations form in the top-surface layer after the asymmetrical rolling with the mismatch speed ratio 1.31 and rolling passes 20 for 91% reduction. In the heating process in vacuum, the recrystallization temperature of the nanocrystallines in the top surface layer of the rolled sheet was found to increase obviously comparing with that obtained after keeping at this temperature for a long duration. In the heating process in Si+1% halide powder, a further enhancement of the recrystallization temperature was observed for the nanocrystallines in the top surface layer of the rolled sheet due to the fastly diffusion of Si atoms along the defaults, then the larger volume fraction of grain boundaries can act as fast diffusion channel at higher temperature (750 ℃), that can accelerate the diffusion of Si atoms, therefore dense compound layer can be obtained within shorter duration and with lower fraction of halide (acts as activator).

Key words:  silicon steel      asymmetric rolling      surface nanocrystallization      heat stability      siliconizing     
Received:  21 April 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00233     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/307

Fig.1  TEM images of the top-surface layer of the silicon steel sheets after asymmetric rolling (AR) (a) and following by heating from room-temperature to 750 ℃ in Si+1% halide (b) (Insets show the corresponding SAED patterns)
Fig.2  Cross-sectional OM images of the AR silicon steel sheets after keeping in vacuum at 550 ℃ (a), 600 ℃ (b) and 650 ℃ (c) for 30 min
Fig.3  Cross-sectional OM images of the AR silicon steel sheets after heating from room-temperature to 650 ℃ (a), 750 ℃ (b) and 850 ℃ (c) in vacuum
Fig.4  Cross-sectional OM images of the AR silicon steel sheets after heating from room-temperature to 650 ℃ (a), 750 ℃ (b) and 850 ℃ (c) in Si+1% halide
Fig 5  XRD spectra of the surface layer of the AR silicon steel sheets after heating to different temperatures in Si+1% halide
Fig 6  Cross-sectional SEM image of the AR silicon steel sheet after heating from room-temperature to 750 ℃ in Si+1% halide (Numbers show the mass fraction (%) of Si measured by EDS)
Fig7  Cross-sectional SEM images of the AR silicon steel sheet after heating from room-temperature to 550 ℃ in Si+5% halide and keeping at this temperature for 240 min (a), and to 750 ℃ in Si+1% halide and keeping at this temperature for 30 min (Insets show the Si distributions along the depth)
[1] Ge L L, Tian N, Lu Z X, You C Y.Appl Surf Sci, 2013; 286: 412
[2] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[3] Wang Z B, Lu K, Wilde G, Divinski S V. Acta Mater, 2010; 58: 2376
[4] Lu S D, Wang Z B, Lu K.Mater Sci Eng, 2010; A527: 995
[5] Surganaragana C, Froes F H.Nanostruct Mater, 1992; 11: 196
[6] Lian J, Valiev R Z, Baudelet B.Acta Metall Mater, 1995; 43: 4165
[7] Klement U, Erb U, Sherik A M E, Aust K T.Mater Sci Eng, 1995; A203: 177
[8] Inami T, Okuda S, Maeta H, Ohtsuka H.Mater Trans JIM, 1998; 39: 1029
[9] Lu K, Wang J T, Wei W D.J Phys, 1992; 25D: 808
[10] Eckert J, Holzen J C, Johnson W L.J Appl Phys, 1993; 73: 131
[11] Lu K, Dong Z F, Bakongi I, Cziraki A.Acta Metall Mater, 1995; 43: 2641
[12] Haiji H, Okada K, Hiratani T, Abe M, Ninomiya M.J Magn Magn Mater, 1996; 160: 109
[13] Phway T P P, Moses A J.J Magn Magn Mater, 2008; 320: 611
[14] Liang Y F, Ye F, Lin J P, Wang Y L, Chen G L.J Alloys Compd, 2010; 491: 268
[15] Viala B, Degauque J, Fagot M, Baricco M, Ferrara E, Fiorillo F.Mater Sci Eng, 1996; A212: 62
[16] Yáñez T R, Ruiz D, Barros J, Houbaert Y, Colás R.Mater Sci Eng, 2007; A447: 27
[17] Takada Y, Abe M, Masuda S, Inagaki J.J Appl Phys, 1988; 64: 5367
[18] Mo C G, Liu G, Huang P, Zuo L.Iron Steel, 2012; 47(3): 65
[18] (莫成刚, 刘刚, 黄璞, 左良. 钢铁, 2012; 47(3): 65)
[19] Liu G, Ma Y, Zhang R J, Wang X L, Sha Y H, Zuo L.Acta Metall Sin, 2014; 50: 1071
[19] (刘刚, 马野, 张瑞君, 王小兰, 沙玉辉, 左良. 金属学报, 2014; 50: 1071)
[20] Mai Y J, Jie X H, Liu L L, Yu N, Zheng X X.Appl Surf Sci, 2010; 256: 1972
[21] Zhang J, Ou X B.Trans Nonferrous Met Soc China, 2010; 20: 1340
[22] Wang A X, Liu G, Zhou L, Wang K, Yang X H, Li Y.Acta Metall Sin, 2005; 41: 577
[22] (王爱香, 刘刚, 周蕾, 王科, 杨晓华, 李瑛. 金属学报, 2005; 41: 577)
[23] Liu G, Liu J Y, Wang X L, Wang F H, Zhao X, Zuo L.Acta Metall Sin, 2013; 49: 599
[23] (刘刚, 刘金阳, 王小兰, 王福会, 赵骧, 左良. 金属学报, 2013; 49: 599)
[24] Wang Z B, Tao N R, Tong W P, Lu J, Lu K.Acta Mater, 2003; 51: 4319
[25] Tong W P, Tao N R, Wang Z B, Lu J, Lu K.Science, 2003; 289: 686
[26] Tong W P, Han Z, Wang L M, Lu J, Lu K.Surf Coat Technol, 2008; 202: 4957
[1] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[2] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[3] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[4] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
[5] Jun HUANG, Haiwen LUO. Influence of Annealing Process on Microstructures, Mechanical and Magnetic Properties of Nb-Containing High-Strength Non-Oriented Silicon Steel[J]. 金属学报, 2018, 54(3): 377-384.
[6] Jianhai YANG,Yuxiang ZHANG,Liling GE,Xiao CHENG,Jiazhao CHEN,Yang GAO. Effect of Hybrid Surface Nanocrystallization Before Welding on Microstructure and Mechanical Properties of Friction Stir Welded 2A14 Aluminum Alloy Joints[J]. 金属学报, 2017, 53(7): 842-850.
[7] Guimin ZENG,Haiwen LUO,Jun LI,Jian GONG,Xianhao LI,Xianhui WANG. Experimental Studies and Numerical Simulation on the Nitriding Process of Grain-Oriented Silicon Steel[J]. 金属学报, 2017, 53(6): 743-750.
[8] Chengxu HE,Fuyao YANG,Guochun YAN,Li MENG,Guang MA,Xin CHEN,Weimin MAO. EFFECT OF NORMALIZING ON TEXTURES OF THIN-GAUGE GRAIN-ORIENTED SILICON STEEL[J]. 金属学报, 2016, 52(9): 1063-1069.
[9] Gongtao LIU,Ping YANG,Weimin MAO. EFFECT OF FINAL ANNEALING ATMOSPHERE ON SECONDARY RECRYSTALLIZATION BEHAVIOR IN THIN GAUGE MEDIUM TEMPERATURE GRAIN ORIENTED SILICON STEEL[J]. 金属学报, 2016, 52(1): 25-32.
[10] LIU Gang, MA Ye, ZHANG Ruijun, WANG Xiaolan, SHA Yuhui, ZUO Liang. SURFACE NANOCRYSTALLIZATION OF SILICON STEEL INDUCED BY ASYMMETRIC ROLLING AND EFFECT OF ROLLING PARAMETERS[J]. 金属学报, 2014, 50(9): 1071-1077.
[11] LIU Wenbo, ZHANG Chi, YANG Zhigang, XIA Zhixin, GAO Guhui, WENG Yuqing. EFFECT OF SURFACE NANOCRYSTALLIZATION ON MICROSTRUCTURE AND THERMAL STABILITY OF REDUCED ACTIVATION STEEL[J]. 金属学报, 2013, 49(6): 707-716.
[12] LI Hui, FENG Yunli, QI Xuejing, CANG Daqiang, LIANG Jinglong. STUDY ON MICROSTRUCTURE AND PRECIPITATES AT DIFFERENT NORMALIZING IN Fe-3.15%Si LOW TEMPERATURE ORIENTED SILICON STEEL[J]. 金属学报, 2013, 49(5): 562-568.
[13] LIU Gang, LIU Jinyang,WANG Xiaolan,WANG Fuhui,ZHAO Xiang,ZUO Liang . FORMATION OF NANOCRYSTALLINES IN THE SURFACE LAYER OF COMMERCIAL PURE TITANIUM THIN SHEET DURING ASYMMETRIC ROLLING[J]. 金属学报, 2013, 49(5): 599-604.
[14] BAI Tao LI Dong GUAN Kaishu. PROPERTY  VARIATION AND MICRO-STRUCTURE EVOLUTION OF 304L STAINLESS STEEL SUBJECTED TO SURFACE MECHANICAL ROLLING TREATMENT[J]. 金属学报, 2011, 47(11): 1459-1463.
[15] YAN Mengqi YANG Ping JIANG Qiwu FU Yongjun MAO Weimin. INFLUENCE OF ROLLING DIRECTION ON THE TEXTURE EVOLUTION OF Fe-3\%Si ALLOY[J]. 金属学报, 2011, 47(1): 25-33.
No Suggested Reading articles found!