|
|
EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL |
Yanhong LU,Yuanyuan SONG,Shenghu CHEN,Lijian Rong( ) |
Key Laborotary of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy ofSciences, Shenyang 110016, China |
|
Cite this article:
Yanhong LU, Yuanyuan SONG, Shenghu CHEN, Lijian Rong. EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL. Acta Metall Sin, 2016, 52(3): 298-306.
|
Abstract 9Cr2WVTa steel is one kind of reduced activation ferritic/martensitic (RAFM) steels, which are considered as the candidate structural materials for the accelerator driven subcritical system (ADS). Effects of Al and Si on the microstructure, tensile properties, impact toughness and corrosion behavior in liquid lead-bismuth eutectic (LBE) of 9Cr2WVTa steels were investigated by SEM, TEM, EPMA and micro hardness tester. The results showed that the addition of Al and Si promoted the formation of δ-ferrite, and Al was a much stronger ferrite stabilizer than Si. The presence of δ-ferrite significantly degraded the impact toughness of 9Cr2WVTa steels. M23C6 carbides were observed to precipitate at the δ-ferrite grain boundaries, and stress concentrations were created at the carbide/matrix interface, resulting in the intergranular cracking after deformation. Static corrosion tests were conducted in oxygen-saturated LBE at 550 ℃ for 5000 h to study the effects of Al and Si on the corrosion behaviors in LBE. It is shown that the addition of Al and Si improved the corrosion resistance in LBE due to that appreciable enrichments of Al and Si in inner oxide layer increased the compactness of oxide layer and reduced the diffusion rates of alloy elements and oxygen atoms.
|
Received: 03 July 2015
|
Fund: Supported by National Natural Science Foundation of China (No.91226204) and Strategic Priority Program of the Chinese Academy of Sciences (No XDA03010304) |
[1] | Kurata Y, Takizuka T, Osugi T, Takano H.J Nucl Mater, 2002; 301: 1 | [2] | Gokhale P A, Deokattey S, Kumar V.Prog Nucl Energy, 2006; 48: 91 | [3] | Botazzoli P, Agosti F, Marcello V, Luzzi L.Radiat Eff Defects Solids, 2009; 164: 330 | [4] | Fazio C, Benamati G, Martini C, Palombarini G.J Nucl Mater, 2001; 296: 243 | [5] | Baluc N, Gelles D, Jitsukawa S, Kimura A, Klueh R T, Odette G R, Van der Schaaf B, Yu J N.J Nucl Mater, 2007; 367: 33 | [6] | Klueh R, Nelson A.J Nucl Mater, 2007; 371: 37 | [7] | Tanigawa H, Shiba K, Sakasegawa H, Hirose T, Jitsukawa S.Fusion Eng Des, 2011; 86: 2549 | [8] | Conn R W, Bloom E E.Nucl Techol, 1984; 5: 291 | [9] | Butterworth G J, Jarvis O N.J Nucl Mater, 1984; 122: 982 | [10] | Klueh R L, Bloom E E.Nucl Eng Des, 1985; 2: 383 | [11] | Dulieu D, Tupholme K W, Butterworth G J.J Nucl Mater, 1986; 1097: 141 | [12] | Tamura M, Hayakawa H.J Nucl Mater, 1986; 1067: 141 | [13] | Noda T, Abe F, Araki H, Okada M.J Nucl Mater, 1986; 1102: 141 | [14] | Lai G Y.High Temperature Corrosion of Engineering Alloys. Materials Park, OH: ASM Int, 1990: 47 | [15] | Gromov B F, Orlov Y I.In: Gulevsky V A ed., Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, Russia: SCC RF-OIPPE, 1999: 87 | [16] | Gorynin I V, Karzov G P.In: Gulevsky V A ed., Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, Russia: SCC RF-OIPPE 1999: 120 | [17] | Liu T, Wang C, Shen H.Corros Sci, 2013; 76: 310 | [18] | Liu X J, He Y Q, Cao G M, Jia T, Wu T Z, Liu Z Y.J Iron Steel Res Int, 2015; 22: 238 | [19] | Fu C, Kong W K, Cao G H.Surf Coat Technol, 2014; 258: 347 | [20] | Li Y S, Spiegel M, Shimada S.Mater Lett, 2004; 58: 3787 | [21] | Mesquita R A, Barbosa C A, Morales E V.Metall Mater Trans, 2011; 42A: 461 | [22] | Yu J, McMahon C J.Metall Trans, 1980; 11A: 277 | [23] | Garrison W M.Metall Trans, 1986; 17A: 669 | [24] | Barros J, Ros-Yanez T, Vandenbossche L.J Magn Mater, 2005; 290: 1457 | [25] | Gao H, Song Y Y, Zhao M J, Hu X F, Rong L J.Acta Metall Sin, 2014; 50: 1429 | [25] | (高恒, 宋元元, 赵明久, 胡小峰, 戎利建. 金属学报, 2014; 50: 1429 | [26] | Hu X Q, Xiao N M, Luo X H, Li D Z.Acta Metall Sin, 2009; 45: 553 | [26] | (胡小强, 肖纳敏, 罗兴宏, 李殿中. 金属学报, 2009; 45: 553) | [27] | Tchizhik A A, Tchizhik T A, Tchizhik A A.J Mater Process Technol, 1998; 77: 226 | [28] | Bashu S A, Singh K, Rawat M S.Mater Sci Eng, 1990; A127: 7 | [29] | Cai G J, Andren H O, Svensson L E.Metall Mater Trans, 1997; 28A: 1417 | [30] | Schäfer L.J Nucl Mater, 1998; 262: 1336 | [31] | Carrouge D, Bhadeshia H K D H, Woollin P.Sci Technol Weld Join, 2004; 9: 377 | [32] | Balbaud-Célérier F, Deloffre P, Terlain A.J Phys IV France, 2002; 12(8): 177 | [33] | Soler L, Martin F J, Hernandez F.J Nucl Mater, 2004; 335: 174 | [34] | Benamati G, Fazio C, Piankova H. J Nucl Mater, 2002; 301: 23 | [35] | Martinelli L, Balbaud-Célérier F.Corros Sci, 2008; 50: 2523 | [36] | Zhang J, Li N.Oxid Met, 2005; 63: 353 | [37] | Martinelli L, Balbaud-Célérier F.Corros Sci, 2008; 50: 2537 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|