Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 298-306    DOI: 10.11900/0412.1961.2015.00348
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL
Yanhong LU,Yuanyuan SONG,Shenghu CHEN,Lijian Rong()
Key Laborotary of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy ofSciences, Shenyang 110016, China
Cite this article: 

Yanhong LU, Yuanyuan SONG, Shenghu CHEN, Lijian Rong. EFFECTS OF Al AND Si ON MECHANICAL PROPERTIES AND CORROSION RESISTANCE IN LIQUID Pb-Bi EUTECTIC OF 9Cr2WVTa STEEL. Acta Metall Sin, 2016, 52(3): 298-306.

Download:  HTML  PDF(9615KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

9Cr2WVTa steel is one kind of reduced activation ferritic/martensitic (RAFM) steels, which are considered as the candidate structural materials for the accelerator driven subcritical system (ADS). Effects of Al and Si on the microstructure, tensile properties, impact toughness and corrosion behavior in liquid lead-bismuth eutectic (LBE) of 9Cr2WVTa steels were investigated by SEM, TEM, EPMA and micro hardness tester. The results showed that the addition of Al and Si promoted the formation of δ-ferrite, and Al was a much stronger ferrite stabilizer than Si. The presence of δ-ferrite significantly degraded the impact toughness of 9Cr2WVTa steels. M23C6 carbides were observed to precipitate at the δ-ferrite grain boundaries, and stress concentrations were created at the carbide/matrix interface, resulting in the intergranular cracking after deformation. Static corrosion tests were conducted in oxygen-saturated LBE at 550 ℃ for 5000 h to study the effects of Al and Si on the corrosion behaviors in LBE. It is shown that the addition of Al and Si improved the corrosion resistance in LBE due to that appreciable enrichments of Al and Si in inner oxide layer increased the compactness of oxide layer and reduced the diffusion rates of alloy elements and oxygen atoms.

Key words:  9Cr2WVTa      impact property      Al      Si      Pb-Bi corrosion     
Received:  03 July 2015     
Fund: Supported by National Natural Science Foundation of China (No.91226204) and Strategic Priority Program of the Chinese Academy of Sciences (No XDA03010304)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00348     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/298

Alloy No. C Cr W V Ta Mn Al Si Fe
1 0.104 8.61 1.66 0.25 0.08 0.49 - 0.10 Bal.
2 0.104 8.51 1.66 0.25 0.09 0.37 1.22 0.11 Bal.
3 0.116 8.45 1.61 0.25 0.10 0.48 - 1.22 Bal.
4 0.170 8.88 1.98 0.25 0.14 0.61 0.15 0.71 Bal.
Table 1  Chemical compositions of four alloys
(mass fraction / %)
Fig.1  SEM images of alloys No.1 (a), No.2 (b), No.3 (c) and No.4 (d) after quenching and tempering treatment (Insets show the corresponding magnified images of rectangular areas)
Fig.2  TEM images of alloys No.1 (a) and No.4 (b) after quenching and tempering treatment
Fig.3  Temperatures dependence of the precipitation of quantity of phases in the alloys No.1 (a), No.2 (b), No.3 (c) and No.4 (d) calculated by Therm-Calc under thermal equilibrium conditions
Fig.4  Room temperature tensile properties of alloys No.1~No.4 after quenching and tempering treatment (σ0.2--yield strength, σb--tensile strength, δ--elongation)
Fig.5  Fracture surface SEM images of alloys No.1 (a), No.2 (b), No.3 (c) and No.4 (d) after impact at room temperature
Fig.6  Cross sectional SEM images near the impact fracture surface of quenching and tempering treatment alloys No.1 (a) and No.2 (b) at room temperature (Inset shows the corresponding magnified image of rectangular area, arrows show the positions of void formed)
Fig.7  Elevated temperature mechanical properties of alloys No.1 (a) and No.4 (b) after quenching and tempering treatment
Fig 8  Thickness of oxide layer in alloys No.1 and No.4 as a function of exposure duration up to 5000 h in liquid Pb-Bi eutectic alloy
Fig 9  Cross sectional SEM images of alloys No.1 (a, c) and No.4 (b, d) corroded for 1500 h (a, b) and 5000 h (c, d) in liquid Pb-Bi eutectic alloy (a--grey zone, b--light-grey zone, c--taupe-coloured sub-layer, 1--steel matrix, 2--oxygen diffusion zone, 3--internal oxide layer, 4--outer oxide layer, 5--Pb-Bi)
Fig 10  Distributions of elements in the oxide layer of alloys No.1 (a) and No.4 (b) samples exposed at 550 ℃ for 1500 h in liquid Pb-Bi eutectic alloy
Fig 11  Vickers hardness profile of the oxide layer of alloys No.1 (a) and No.4 (b) exposed at 550 ℃ for 5000 h in liquid Pb-Bi eutectic alloy (IOZ—internal oxidation zone)
[1] Kurata Y, Takizuka T, Osugi T, Takano H.J Nucl Mater, 2002; 301: 1
[2] Gokhale P A, Deokattey S, Kumar V.Prog Nucl Energy, 2006; 48: 91
[3] Botazzoli P, Agosti F, Marcello V, Luzzi L.Radiat Eff Defects Solids, 2009; 164: 330
[4] Fazio C, Benamati G, Martini C, Palombarini G.J Nucl Mater, 2001; 296: 243
[5] Baluc N, Gelles D, Jitsukawa S, Kimura A, Klueh R T, Odette G R, Van der Schaaf B, Yu J N.J Nucl Mater, 2007; 367: 33
[6] Klueh R, Nelson A.J Nucl Mater, 2007; 371: 37
[7] Tanigawa H, Shiba K, Sakasegawa H, Hirose T, Jitsukawa S.Fusion Eng Des, 2011; 86: 2549
[8] Conn R W, Bloom E E.Nucl Techol, 1984; 5: 291
[9] Butterworth G J, Jarvis O N.J Nucl Mater, 1984; 122: 982
[10] Klueh R L, Bloom E E.Nucl Eng Des, 1985; 2: 383
[11] Dulieu D, Tupholme K W, Butterworth G J.J Nucl Mater, 1986; 1097: 141
[12] Tamura M, Hayakawa H.J Nucl Mater, 1986; 1067: 141
[13] Noda T, Abe F, Araki H, Okada M.J Nucl Mater, 1986; 1102: 141
[14] Lai G Y.High Temperature Corrosion of Engineering Alloys. Materials Park, OH: ASM Int, 1990: 47
[15] Gromov B F, Orlov Y I.In: Gulevsky V A ed., Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, Russia: SCC RF-OIPPE, 1999: 87
[16] Gorynin I V, Karzov G P.In: Gulevsky V A ed., Proceedings of Heavy Liquid Metal Coolants in Nuclear Technology, Obninsk, Russia: SCC RF-OIPPE 1999: 120
[17] Liu T, Wang C, Shen H.Corros Sci, 2013; 76: 310
[18] Liu X J, He Y Q, Cao G M, Jia T, Wu T Z, Liu Z Y.J Iron Steel Res Int, 2015; 22: 238
[19] Fu C, Kong W K, Cao G H.Surf Coat Technol, 2014; 258: 347
[20] Li Y S, Spiegel M, Shimada S.Mater Lett, 2004; 58: 3787
[21] Mesquita R A, Barbosa C A, Morales E V.Metall Mater Trans, 2011; 42A: 461
[22] Yu J, McMahon C J.Metall Trans, 1980; 11A: 277
[23] Garrison W M.Metall Trans, 1986; 17A: 669
[24] Barros J, Ros-Yanez T, Vandenbossche L.J Magn Mater, 2005; 290: 1457
[25] Gao H, Song Y Y, Zhao M J, Hu X F, Rong L J.Acta Metall Sin, 2014; 50: 1429
[25] (高恒, 宋元元, 赵明久, 胡小峰, 戎利建. 金属学报, 2014; 50: 1429
[26] Hu X Q, Xiao N M, Luo X H, Li D Z.Acta Metall Sin, 2009; 45: 553
[26] (胡小强, 肖纳敏, 罗兴宏, 李殿中. 金属学报, 2009; 45: 553)
[27] Tchizhik A A, Tchizhik T A, Tchizhik A A.J Mater Process Technol, 1998; 77: 226
[28] Bashu S A, Singh K, Rawat M S.Mater Sci Eng, 1990; A127: 7
[29] Cai G J, Andren H O, Svensson L E.Metall Mater Trans, 1997; 28A: 1417
[30] Schäfer L.J Nucl Mater, 1998; 262: 1336
[31] Carrouge D, Bhadeshia H K D H, Woollin P.Sci Technol Weld Join, 2004; 9: 377
[32] Balbaud-Célérier F, Deloffre P, Terlain A.J Phys IV France, 2002; 12(8): 177
[33] Soler L, Martin F J, Hernandez F.J Nucl Mater, 2004; 335: 174
[34] Benamati G, Fazio C, Piankova H. J Nucl Mater, 2002; 301: 23
[35] Martinelli L, Balbaud-Célérier F.Corros Sci, 2008; 50: 2523
[36] Zhang J, Li N.Oxid Met, 2005; 63: 353
[37] Martinelli L, Balbaud-Célérier F.Corros Sci, 2008; 50: 2537
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[8] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[11] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[12] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[13] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[15] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
No Suggested Reading articles found!