Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 562-568    DOI: 10.3724/SP.J.1037.2012.00644
Current Issue | Archive | Adv Search |
STUDY ON MICROSTRUCTURE AND PRECIPITATES AT DIFFERENT NORMALIZING IN Fe-3.15%Si LOW TEMPERATURE ORIENTED SILICON STEEL
LI Hui1), FENG Yunli2), QI Xuejing2), CANG Daqiang1), LIANG Jinglong2)
1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083
2) College of Metallurgy and Energy, Hebei United University, Tangshan 063009
Cite this article: 

LI Hui, FENG Yunli, QI Xuejing, CANG Daqiang, LIANG Jinglong. STUDY ON MICROSTRUCTURE AND PRECIPITATES AT DIFFERENT NORMALIZING IN Fe-3.15%Si LOW TEMPERATURE ORIENTED SILICON STEEL. Acta Metall Sin, 2013, 49(5): 562-568.

Download:  PDF(3841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The decreasing of slab heating temperature for grain-oriented silicon steel will reduce the amount of precipitates in hot rolled plate, and be disadvantage to the formation of ultimate Goss texture. The aim of normalizing is to control and adjust the amount, size and distribution of precipitates. Microstructures, precipitates and magnetic characteristics of finished products with different normalizing technologies for Fe-3.15%Si low temperature hot rolled grain-oriented silicon steel are researched, and the textures of cold rolled plates which are  original hot rolled plate and normalized plate are analyzed by means of OM, TEM, EDS and XRD, respectively. The results show that, normalizing technology with a temperature of 1120 ℃, holding 3 min, and a two-stage cooling is a most advantaged to obtain oriented silicon steel with sharper Goss texture and higher magnetic, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness; the normalizing technology with two-stage cooling is the optimum process, which due to more finer precipitates are dispersively distributed in the matrix, and it is beneficial for finished products to get a higher magnetic; in these two processes, they obtain the same textures  which are mainly consist of {111}<110> and {111}<112>, however,comparing with the cold rolled textures without normalizing, the texturesdensity of γ orientation line on cold rolled plate which treated by normalizing are significantly increased.Therefore, it is confirmed that normalizing is helpful for grain--oriented silicon steel to get sharper Goss texture.

Key words:  low temperature grain-oriented silicon steel      normalizing      microstructure      precipitate, texture     
Received:  29 October 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00644     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/562

[1] Yan M Q, Yang P, Jiang Q W, Fu Y J, Mao W M.  Acta Metall Sin, 2011; 47: 25


(颜孟奇, 杨平, 蒋奇武, 付勇军, 毛卫民. 金属学报, 2011; 47: 25)

[2] Hu H.  Acta Metall, 1960; 8: 124

[3] Ushioda K, Hutchinson W B.  ISIJ Int, 1989; 29: 862

[4] Bottcher A, Lucke K.  Acta Metall Mater, 1993; 41: 2503

[5] Misha S, Darmann C, Lucke K.  Metall Mater Trans, 1986; 17A: 1301

[6] Klaus G.  Steel Res Int, 2005; 76: 413

[7] Xia Z S, Kang Y L, Ni X J, Zhou Y J, Wang Q L.  J Univ Sci Technol Beijing, 2009; 31: 439

(夏兆所, 康永林, 倪献娟, 周谊军, 王全礼. 北京科技大学学报, 2009; 31: 439)

[8] Kumano T, Haratani T, Fujii N.  ISIJ Int, 2005; 45: 95

[9] Li J, Sun Y, Zhao Y.  Iron Steel, 2007; 42(10): 72

(李军, 孙颖, 赵宇. 钢铁, 2007; 42(10): 72)

[10] Liu G M.  Spec Steel, 2005; 26(1): 38

(刘光穆.特殊钢, 2005; 26(1): 38)

[11] Gao X H, Qi K M, Qiu C L.  Mater Sci Eng, 2006; A430: 138

[12] Futtu S , Chiba K.  J Magn Magn Mater, 2000; 215: 69

[13] Wang R P, Li S D, Fang Z M, Mao J H, Li P H, Xu G.  Met Heat Treat, 2009; 34(6): 9

(王若平, 黎世德, 方泽民, 毛炯辉, 李平和, 许光. 金属热处理, 2009; 34(6): 9)

[14] He Z Z.  Electric Steel. Beijing: Metallurgical Industry Press, 1997: 590

(何忠治. 电工钢. 北京: 冶金工业出版社, 1997: 590)

[15] Hong B D, Han K S, Kwan J.  Steel Res Int, 2005; 76: 448

[16] Chang S K.  Mater Sci Eng, 2007; A452: 93

[17] Nakashima S, Takashima K, Harase J.  ISIJ Int, 1991; 31: 1031

[18] Yu Y M.  PhD Dissertation, Northeastern University, Shenyang, 2008

(于永梅.东北大学博士学位论文, 沈阳, 2008)

[19] Mao W M, Yang P, Chen L.  Analysis and Measuring Technology of Material Texture.

Beijing: Metallurgical Industry Press, 2008: 32

(毛卫民, 杨平, 陈冷. 材料织构分析原理与检测技术. 北京:冶金工业出版社, 2008: 32)

[20] Zhang N, Yang P, Mao W M.  Acta Metall Sin, 2012; 48: 307

(张宁, 杨平, 毛卫民. 金属学报, 2012; 48: 307)

[21] Koh P K, Dunn C G.  Trans AIME, 1955; 203: 401

[22] Dunn C G.  Acta Metall, 1954; 2: 173

[23] Li C Y, Ye Y P, Chen S H.  Iron Steel, 2009; 37(4): 6

(李长一, 叶影萍, 陈士华. 钢铁, 2009; 37(4): 6)

[24] Walter J L, Hibbard W R.  Trans Metall Soc AIME, 1958; 212: 731

[25] Dorner D, Zaefferer S, Lahn L, Raabe D.  J Magn Magn Mater, 2006; 304: 183
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!