Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (3): 289-297    DOI: 10.11900/0412.1961.2015.00322
Orginal Article Current Issue | Archive | Adv Search |
COMPUTATIONAL STUDY ON MICROSTRUCTURE-SENSITIVE HIGH CYCLE FATIGUE DISPERSIVITY
Shiwei HAN1,Duoqi SHI1,2,Xiaoguang YANG1,2,Guolei MIAO1
1) School of Energy and Power Engineering, Beihang University, Beijing 100191, China
2) the Collaborative Innovation Center for Advanced Aero-Engine (CICAAE), Beijing 100191, China;
Cite this article: 

Shiwei HAN, Duoqi SHI, Xiaoguang YANG, Guolei MIAO. COMPUTATIONAL STUDY ON MICROSTRUCTURE-SENSITIVE HIGH CYCLE FATIGUE DISPERSIVITY. Acta Metall Sin, 2016, 52(3): 289-297.

Download:  HTML  PDF(2355KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Empirical approaches to characterize the variability of high cycle fatigue have been widely used. However, little is understood about the intrinsic relationship of randomness of microstructure attributes on the overall variability in high cycle fatigue. The ability of quantifying the dispersivity of high cycle fatigue with physics based computational methods has great potential in design of minimum life and can aid in the improvement of fatigue resistance. To investigate the effects between microstructure attributes and high cycle fatigue dispersivity, the microstructure-sensitive extreme value probabilistic framework is introduced. First, the Voronoi algorithm is used to construct random polycrystalline microstructure representative volume elements. Different kinds of periodic boundary conditions are proposed to simulate the interior and surface constraints in polycrystalline microstructure representative volume elements. Then mechanical responses of both interior and surface microstructure representative volume elements under different strain amplitudes are simulated by internal state variable based crystal plasticity. The fatigue indicator parameter is introduced to characterize the driving force for fatigue crack formation dominated by maximum shear plastic strain amplitude. By computing a limited number of random polycrystalline microstructure representative volume elements, the distributions of fatigue indicator parameter under different strain amplitudes are obtained and analyzed with extreme value probability theory. The study with a kind of titanium alloy with material grade TC4 supports that the high cycle fatigue dispersivity increases with the decrease of the strain amplitude, especially under elastic limit. The extreme value of fatigue indicator parameter from random polycrystalline microstructure representative volume elements correlates well with the Gumbel extreme value distribution. Besides, the lower the average stress under different strain amplitudes, the fewer grains in polycrystalline microstructure representative volume element yield. Moreover, the grains on surface tend to have higher probability to initiate fatigue cracks and lower dispersivity in fatigue crack formation.

Key words:  high cycle fatigue      fatigue dispersivity      extreme value probability      polycrystalline microstructure      crystal plasticity     
Received:  23 June 2015     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00322     OR     https://www.ams.org.cn/EN/Y2016/V52/I3/289

Fig.1  Computational framework of microstructure-sensitive extreme value probability
Fig.2  Geometry model

(a) Voronoi tessellation (b) mesh generation (c) {0001} pole figure (RD--rolling direction, TD--transverse direction)

Fig.3  Periodic boundary condition
(a) full infinite space (interior) (b) half infinite space (surface)
Fig.4  Probability density distribution of grain volume (k--shape parameter, q--scale parameter)
Fig.5  Frequency distribution of standard deviation in grain volumes within each microstructure representative volume element (RVE)
Case number Strain amplitude Δε Δε p (under monotonic tension) Spatial constraint
1 0.45% 0 Interior
2 0.50% 0 Interior
3 0.60% 0.0145% Interior
4 0.70% 0.0489% Interior
5 0.70% 0.0489% Surface
Table 1  Computational parameters for microstructure RVEs
Fig.6  Monotonic tensile curve and corresponding plastic strain increment Δε p for TC4 alloy
Fig.7  Probability density distributions of grain-averaged fatigue indicator parameter (FIP) in primary α phase grains at different strain amplitudes Δε
Fig.8  Distributions of mean and standard deviation of grain-averaged FIP within each microstructure RVE at different Δε
Fig 9  Distributions of mean and standard deviation of grain- averaged FIP in interior and surface microstructure RVEs at 0.70% strain amplitude
Fig 10  Extreme value distributions of grain-averaged FIP in each microstructure RVE at different D e(P--accumulative probability)
Fig 11  Extreme value distribution of grain- averaged FIP in each microstructure RVE at 0.45% stain amplitude
Case number un bn bn/un R2
1 5.6×10-7 3.410×10-6 6.0842 0.7934
2 1.6×10-4 2.090×10-4 1.3025 0.9064
3 3.9×10-3 3.862×10-4 0.0976 0.9675
4 7.3×10-3 6.541×10-4 0.0896 0.9808
5 8.2×10-3 7.046×10-4 0.0859 0.9910
Table 2  Fitting parameters of Gumbel distribution
[1] Cowles B A. Int J Fracture, 1989; 80: 147
[2] Przybyla C P.PhD Dissertation, Georgia Institute of Technology, USA, 2010
[3] Tucker J C, Cerrone A R III, Ingraffea A R, Rollett A D.Modell Simul Mater Sci Eng, 2015; 23: 1
[4] McDowell D L, Dunne F P E.Int J Fatigue, 2010; 32: 1521
[5] McDowell D L.Int J Plast, 2010; 26: 1280
[6] Przybyla C P, McDowell D L.Int J Plast, 2010; 26: 372
[7] Przybyla C P, McDowell D L.Acta Mater, 2012; 60: 293
[8] Przybyla C, Prasannavenkatesan R, Salajegheh N, McDowell D L.Int J Fatigue, 2010; 32: 512
[9] Bridier F, McDowell D L, Villechaise P, Mendez J.Int J Plast, 2009; 25: 1066
[10] Castelluccio G M.PhD Dissertation, Georgia Institute of Technology, USA, 2012
[11] Musinski W D.PhD Dissertation, Georgia Institute of Technology, USA, 2014
[12] Zhang M, Zhang J, McDowell D L.Int J Plast, 2007; 23: 1328
[13] Zhang M.PhD Dissertation, Georgia Institute of Technology, USA, 2018
[14] Mu Y W, Lu S.Acta Aeroet Astro Sin, 2013; 34: 282
[14] (牟园伟, 陆山. 航空学报, 2013; 34: 282)
[15] Tanaka K, Mura T.J Appl Mech, 1981; 48: 97
[16] Sharaf M, Kucharczyk P, Vajragupta N, Munstermann S, Hartmaier A, Blech W.Comput Mater Sci, 2014; 94: 258
[17] China Aeronatical Material Manual Editorial Board. China Aeronautical Material Manual. Vol.4, Beijing: China Standard Press, 2002: 104
[17] (中国航空材料手册编委会. 中国航空材料手册. 第4卷, 北京: 中国标准出版社, 2002: 104)
[18] Quey R, Dawson P R, Barbe F.Comput Methods Appl Mech Eng, 2011; 20: 1729
[19] Peirce D, Asaro R J, Needleman A.Acta Metall, 1982; 30: 1087
[20] Asaro R J.Adv Appl Mech, 1983; 23: 1
[21] Peirce D, Asaro R J, Needleman A.Acta Metall, 1983; 31: 1951
[22] Lee E H.J Appl Mech, 1969; 36: 1
[23] Rice J R.J Mech Phys Solids, 1971; 19: 433
[24] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto D D, Bieler T R, Raabe D.Acta Mater, 2010; 58: 1152
[25] Fatemi A, Socie D F.Fatigue Fract Engng Mater Struct, 1988; 11: 146
[26] Bennett V P, McDowell D L. Mixed-Mode Crack Behavior. Pennsylvania: American Society for Testing and Materials, 1999: 203
[27] Gumbel E J.Statistics of Extremes. New York: Columbia University Press, 1958: 1
[28] Lütjering G, Williams J C.Titanium. Verlag Berlin Heidelberg: Springer, 2003: 202
[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[4] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[5] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[6] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[7] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[8] Chen WANG, Beibei WANG, Peng XUE, Dong WANG, Dingrui NI, Liqing CHEN, Bolü XIAO, Zongyi MA. Fatigue Behavior of Friction Stir Welded SiCp/6092Al Composite[J]. 金属学报, 2019, 55(1): 149-159.
[9] Hanqing LIU, Chao HE, Zhiyong HUANG, Qingyuan WANG. Very High Cycle Fatigue Failure Mechanism of TC17 Alloy[J]. 金属学报, 2017, 53(9): 1047-1054.
[10] Lina ZHU,Caiyan DENG,Dongpo WANG,Shengsun HU. EFFECT OF SURFACE ROUGHNESS ON VERY HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(5): 583-591.
[11] Shoudong CHEN,Xianghua LIU,Lizhong LIU,Meng SONG. CRYSTAL PLASTICITY FINITE ELEMENT SIMULA- TION OF SLIP AND DEFORMATION IN ULTRA- THIN COPPER STRIP ROLLING[J]. 金属学报, 2016, 52(1): 120-128.
[12] Hongsheng DING, Zibo SHANG, Yongzhe WANG, Ruirun CHEN, Jingjie GUO, Hengzhi FU. TENSILE AND HIGH CYCLE FATIGUE PROPERTIES OF Ti-47Al-2Cr-2Nb DIRECTIONALLY SOLIDIFIED BY COLD CRUCIBLE METHOD[J]. 金属学报, 2015, 51(5): 569-579.
[13] SUN Chaoyang, GUO Xiangru, HUANG Jie, GUO Ning, WANG Shanwei, YANG Jing. MODELLING OF PLASTIC DEFORMATION ON COUPLING TWINNING OF SINGLE CRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(3): 357-363.
[14] Chaoyang SUN,Xiangru GUO,Ning GUO,Jing YANG,Jie HUANG. INVESTIGATION OF PLASTIC DEFORMATION BEHAVIOR ON COUPLING TWINNING OF POLYCRYSTAL TWIP STEEL[J]. 金属学报, 2015, 51(12): 1507-1515.
[15] YAN Wuzhu, ZHANG Jiazhen, ZHOU Zhengong, YUE Zhufeng. STUDY ON THE INDENTATION BEHAVIORS OF BICRYSTALS BASED ON CRYSTAL PLASTICITY THEORY[J]. 金属学报, 2015, 51(1): 100-106.
No Suggested Reading articles found!