Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (8): 951-956    DOI: 10.11900/0412.1961.2014.00686
Current Issue | Archive | Adv Search |
CHARACTERISTICS OF THE FRICTION WELDING INTERFACE BETWEEN SINGLE CRYSTAL SUPERALLOY DD3 AND FINE GRAINED SUPERALLOY GH4169
Suigeng DU(),Xifeng WANG,Man GAO
Key Laboratory of Ministry of Education for Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

Suigeng DU,Xifeng WANG,Man GAO. CHARACTERISTICS OF THE FRICTION WELDING INTERFACE BETWEEN SINGLE CRYSTAL SUPERALLOY DD3 AND FINE GRAINED SUPERALLOY GH4169. Acta Metall Sin, 2015, 51(8): 951-956.

Download:  HTML  PDF(6110KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to high demand of welded turbine blisk, a fine grain superalloy, GH4169, has been widely used to make the disk and a single crystal superalloy, DD3, has been used for blades. In this work, the joint micro-structure and the mechanism of friction welding between the GH4169 and DD3 have been investigated by using the SEM and TEM equipped with EDS. The research results show that there is a friction deformed band of the GH4169 in the weld zone. The heat and mechanical affected zones of the two alloys form dynamic recrystallization grains. The bonding interface is between their dynamic recrystallization grains. The two alloys bond with the common grains and the common grain boundaries. Their compositional change mainly occurs within the common grains and the common grain boundaries at bonding interface. The common grain (C2) at the viewpoint of TEM analysis and adjacent dynamic recrystallization grain (C3) of the GH4169 has a specific orientation relationship, [1ˉ14]C2 ∥ [1ˉ10]C3 , (220)C2 ∥ (220)C3. With the friction welding thermal cycles and post weld heat treatment, the g' phase precipitates with tiny spherical distribution at the common grain and the two sides of dynamic recrystallization grains, and coherent with g matrix. But no g" phase precipitates.

Key words:  single crystal      superalloy      friction welding      bonding mechanism      common grain     
Fund: Supported by National Natural Science Foundation of China (No.51175430)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00686     OR     https://www.ams.org.cn/EN/Y2015/V51/I8/951

Alloy C Cr Co Mo W Al Ti Fe Nb Ni
DD3 - 9.5 5 3.8 5.2 5.9 2.1 - - Bal.
GH4169 0.04 19 - 3.0 - 0.5 1.0 18.5 5.1 Bal.
Table 1  Chemical compositions of tested alloys
Fig.1  SEM images of the welding zone of DD3 and GH4169 friction welding joint (DRX—dynamic recrystallization)
Fig.2  SEM image (a) and EDS analysis (b) of common grain boundary in weld zone of DD3 and GH4169 friction welding
Fig.3  SEM image (a) and EDS analysis (b) of common grain in weld zone of DD3 and GH4169 friction welding
Fig.4  TEM image (a) and EDS analysis of areas C1~C4 in Fig.4a (b) in weld zone of DD3 and GH4169 friction welding
Fig.5  TEM image (a) and SAED analysis of grains C1 ([uvw]= ) (b), C2 ([uvw]= ) (c) and C3 ([uvw]= ) (d) in Fig.5a, composite SAED pattern of C2 and C3 (e) and center dark field image of g' phase (f)
[1] Pollock T M, Tin S. J Propul Power, 2006; 22: 361
[2] Huang C F. Aero Manuf Technol, 2006; (4): 94 (黄春峰. 航空制造技术, 2006; (4): 94)
[3] Yilmaz O, Gindy N, Gao J. Rob Comput-Integrated Manuf, 2010; 26: 190
[4] Mateo A. Revista Metalurgia, 2014; 50(3): e023
[5] Preuss M, Withers P J, Baxter G J. Mater Sci Eng, 2006; A437: 38
[6] Schnell A, Hoebel M, Samuleson J. Adv Mater Res, 2011; 278: 434
[7] Henderson M B, Arrell D, Larsson R, Heobel M, Marchant G. Sci Technol Weld Joining, 2004; 9: 13
[8] Damodaram R, Raman S G S, Rao K P. Mater Sci Eng, 2013; A560: 781
[9] Bhamji I, Preuss M, Threadgill P L, Addison A C. Mater Sci Technol, 2011; 27: 2
[10] Moosavy H N, Aboutalebi M, Seyedein S H. J Mater Process Technol, 2012; 212: 2210
[11] Chamanfar A, Jahazi M, Cormier J. Metall Mater Trans, 2015; 46A: 1
[12] Ojo O A. J Mater Sci, 2012; 47: 1598
[13] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Sci Technol Weld Joining, 2010; 15: 194
[14] Steuer S, Singer R F. Metall Mater Trans, 2014; 45A: 3545
[15] Liu J, Cao J, Lin X, Song X, Feng J. Mater Des, 2013; 49: 622
[16] Karadge M, Preuss M, Withers P J, Bray S. Mater Sci Eng, 2008; A491: 446
[17] Du S G, Fu L, Wang Z P. J Northwest Polytech Univ, 2003; 21: 136 (杜随更, 傅 莉, 王忠平. 西北工业大学学报, 2003; 21: 136)
[18] Du S G, Wang Q, Fu L. Trans Chin Weld Ins, 2002; 23(4): 27 (杜随更, 王 庆, 傅 莉. 焊接学报, 2002; 23(4): 27)
[19] Du S G, Wang X F, Wang J W, Jiang Z. Trans Chin Weld Ins, 2014; 35(6): 13 (杜随更, 王喜锋, 王晋伟, 姜 哲. 焊接学报, 2014; 35(6): 13)
[20] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook. Vol.2, Beijing: China Standard Press, 2002: 842 (中国航空材料手册编辑委员会. 中国航空材料手册. 第2卷, 北京: 中国标准出版社, 2002: 842)
[21] Xiong J C, Li J R, Zhao J Q, Liu S Z, Dong J X. Acta Metall Sin, 2009; 45: 1232 (熊继春, 李嘉荣, 赵金乾, 刘世忠, 董建新. 金属学报, 2009; 45: 1232)
[22] Wu C L, Xu Q Y, Xiong J C, Li Z L, Li J R, Liu B C. Acta Metall Sin, 2013; 49: 523 (吴春龙, 许庆彦, 熊继春, 李忠林, 李嘉荣, 柳百成. 金属学报, 2013; 49: 523)
[23] Chen X, Lin Y C, Wen D, Zhang J, He M. Mater Des, 2014; 57: 568
[24] Geddes B, Leon H, Huang X. Superalloys: Alloying and Performance. Materials Park, Ohio: ASM International, 2010: 10
[25] Xie X S, Dong J X, Fu S H, Zhang M C. Acta Metall Sin, 2010; 46: 1289 (谢锡善, 董建新, 付书红, 张麦仓. 金属学报, 2010; 46: 1289)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[11] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[14] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!