INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY
LIN Huiwen, LIU Jide(), ZHOU Yizhou, JIN Tao, SUN Xiaofeng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:
LIN Huiwen, LIU Jide, ZHOU Yizhou, JIN Tao, SUN Xiaofeng. INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY. Acta Metall Sin, 2015, 51(1): 77-84.
The Ni-based single crystal superalloys are considered to be the major materials for advanced areo-engine blades. In order to improve the high temperature properties of Ni-based single crystal superalloys, many refractory elements are introduced into this kind of alloys. Recently Pt has been suggested to be the alloying elements of advanced Ni-based single crystal superalloys. However, there are no researches for the effects of Pt on creep rupture properties of advanced single crystal superalloys. In this work, the influence of Pt element on the creep rupture properties of a Re-containing single crystal superalloy was investigated. The high-temperature creep rupture properties of the Pt-containing Ni-based single crystal superalloy at 1100 ℃, 180 MPa and 1000 ℃, 310 MPa were investigated. The deformation microstructure and the morphology of dislocations were studied by SEM and TEM. The results show that the creep rupture life of Pt-containing superalloy decrease slightly at 1100 ℃, 180 MPa and decreased obviously at 1000 ℃, 310 MPa. The fracture models of different alloys are all ductile fracture, and many irregular microviods and microcracks can be observed in the fracture surfaces. After high temperature creep deformation, regular dislocation networks formed at the g/g' interfaces. The differences of creep rupture properties among those alloys are that Pt element may promote the formation of TCP phase, and the interface between the TCP phase and g matrix may be favorite sites of the initiation of microvoids and microcracks.
Table 1 Nominal compositions of experimental alloys
Fig.1 Schematic of creep rupture test sample (unit: mm)
Alloy
1100 ℃, 180 MPa
1000 ℃, 310 MPa
t / h
d / %
t / h
d / %
0Pt
65.58
17.8
97.19
28.3
1.5Pt
63.28
18.6
82.50
23.4
3Pt
56.74
19.4
77.98
19.1
Table 2 Rupture life (t) and elongation (d) of different alloys
Fig.2 Low (a, c, e) and high (b, d, f) magnified SEM images of fracture morphologies of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1100 ℃ and 180 MPa
Fig.3 Low (a, c, e) and high (b, d, f) magnified SEM images of fracture morphologies of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1000 ℃ and 310 MPa
Fig.4 Low (a, c, e) and high (b, d, f) magnified SEM images of longitudinal microstructures of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1100 ℃ and 180 MPa
Fig.5 Low (a, c, e) and high (b, d, f) magnified SEM images of longitudinal microstructures of 0Pt (a, b), 1.5Pt (c, d) and 3Pt (e, f) alloys after rupture test at 1000 ℃ and 310 MPa
Fig.6 TEM images of dislocation networks configuration in 0Pt (a), 1.5Pt (b) and 3Pt (c) alloys after rupture test at 1100 ℃ and 180 MPa
Fig.7 TEM images of dislocation networks configuration in 0Pt (a), 1.5Pt (b) and 3Pt (c) alloys after rupture test at 1000 ℃ and 310 MPa (Arrows show the dislocations)
[1]
Kearsey R M, Beddoes J C, Jaansalu K M, Thompson W T, Au P. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 801
[2]
Reed R C. Superalloys:Fundamentals and Applications. Cambride: Cambridge University Press, 2006: 147
[3]
Cetel A D, Duhl D N. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale: Minerals, Metals & Materials Soc, 1988: 235
[4]
Walston W S, O'Hara K S, Ross E W, Pollock T M, Murphy W H. In: Kissmger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: Minerals, Metals & Materials Soc, 1996: 27
[5]
Erickson G L. In: Kissmger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Superalloys 1996, Warrendale: Minerals, Metals & Materials Soc, 1996: 35
[6]
Koizumi Y, Kobayashi T, Yokokawa T, Zhang J X, Osawa M, Harada H, Aoki Y, Arai M. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 35
[7]
Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. Scr Mater, 2006; 54: 1679
[8]
Yeh A C, Tin S. Metall Mater Trans, 2006; 37A: 2621
[9]
Neumeier S, Pyczak F, Goeken M. In: Reed R C, Green K A, Caron P, Grabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Superalloys 2008, Warrendale: Minerals, Metals & Materials Soc, 2008: 109
[10]
Rae C M F, Karunaratne M S A, Small C J, Broomfield R W, Jones C N, Reed R C. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S L, Schirra J J eds., Superalloys 2000, Warrendale: TMS, 2000: 767
[11]
O'hara K S, Walston W S, Ross E W, Darolia R. US Pat, 5482789, 1996
[12]
Ofori A P, Rossouw C J, Humphreys C J. Acta Mater, 2005; 53: 97
[13]
Carroll L J, Feng Q, Mansfield J F, Pollock T M. Metall Mater Trans, 2006; 37A: 2927
[14]
Tin S, Yeh A C, Ofori A P, Reed R C, Babu S S, Miller M K. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: TMS, 2004: 735
[15]
Ofori A P, Humphreys C J, Tin S, Jones C N. In: Green K A, Pollock T M, Harada H, Howson T E, Reed R C, Schirra J J, Walston S eds., Superalloys 2004, Warrendale: Minerals, Metals & Materials Soc, 2004: 787
[16]
Reed R C, Yeh A C, Tin S, Babu S S, Miller M K. Scr Mater, 2004; 51: 327
[17]
Murakami H, Honma T, Koizumi Y, Harada H. In: Pollock T M, Kissinger R D, Bowman R R, Green K A, McLean M, Olson S, Schirra J J eds., Superalloys 2000, Warrendale: Minerals, Metals & Materials Soc, 2000: 747
[18]
Van Sluytman J S, La Fontaine A, Cairney J M, Pollock T M. Acta Mater, 2010; 58: 1952
[19]
Yokokawa T, Osawa M, Nishida K, Kobayashi T, Koizumi Y, Harada H. Scr Mater, 2003; 49: 1041
[20]
Murakami H, Koizumi Y, Yokokawa T, Yamabe M Y, Yamagata T, Harada H. Mater Sci Eng, 1998; A250: 109
[21]
Van Sluytman J S, Suzuki A, Bolcavage A, Helmink R C, Ballard D L, Pollock T M. In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S eds., Superalloys 2008, Warrendale: TMS, 2008: 499
[22]
Heidloff A J, Van Sluytman J S, Pollock T M, Gleeson B. Metall Mater Trans, 2009; 40A: 1529
[23]
Lin H W, Zhou Y Z, Zhang X, Jin T, Sun X F. Acta Metall Sin, 2013; 49: 1567
(林惠文, 周亦胄, 张 炫, 金 涛, 孙晓峰. 金属学报, 2013; 49: 1567)
[24]
Zhang J X, Wang J C, Harada H, Koizumi Y. Acta Mater, 2005; 53: 4623
[25]
Lin H W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2013