Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1453-1460    DOI: 10.11900/0412.1961.2014.00184
Current Issue | Archive | Adv Search |
EFFECT OF HEAT TREATMENT ON ANTIBACTERIAL PERFORMANCE OF 3Cr13MoCu MARTENSITIC STAINLESS STEEL
WANG Shuai1,2, YANG Chunguang2, XU Dake2, SHEN Minggang1, NAN Li2, YANG Ke2()
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Shuai, YANG Chunguang, XU Dake, SHEN Minggang, NAN Li, YANG Ke. EFFECT OF HEAT TREATMENT ON ANTIBACTERIAL PERFORMANCE OF 3Cr13MoCu MARTENSITIC STAINLESS STEEL. Acta Metall Sin, 2014, 50(12): 1453-1460.

Download:  HTML  PDF(3835KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of aging on antibacterial performance of 3Cr13MoCu martensitic stainless steel was studied by antibacterial test, Vickers hardness measurement, TEM observation, confocal laser scanning microscope (CLSM) and SEM observations. The results showed that increase of the aging temperature did favor to rapid precipitation of Cu-rich phases in the steel matrix, and correspondingly, the antibacterial rate was increased, but the hardness declined. Aging at 500 ℃ for 10~14 h could enhance both antibacterial rate and hardness due to the increase of precipitation of Cu-rich phases. Therefore the optimal heat treatment for 3Cr13MoCu martensitic stainless steel was proposed to solution at 1080 ℃ for 30 min, water cooling to room temperature, then aging at 500 ℃ for 10~14 h, air cooling to room temperature. CLSM and SEM observations indicated that 3Cr13MoCu martensitic stainless steel with optimum heat treatment could effectively killed the free bacteria and inhibited the formation of bacterial bio-films on its surface.

Key words:  Cu-bearing martensitic stainless steel      antibacterial performance      hardness      bio-film     
ZTFLH:  TG142  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00184     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1453

  
Fig.2  Antibacterial rate against staphylococcus aureus (S. aureus) of 3Cr13MoCu stainless steel aged at different temperatures for 6 h
Fig.3  Variation of Vickers hardness of 3Cr13MoCu stainless steel with aging temperature (aging time is 6 h)
Fig.4  TEM images of 3Cr13MoCu stainless steel (a, b) and corresponding EDS analyses(c~e)

(a) aged at 600 ℃ for 6 h (b) aged at 800 ℃for 6 h

(c) EDS analysis of Cu-rich precipitates in the steel (point I) shown in Fig.4a

(d) EDS analysis of Cu-rich precipitates in the steel (point II) shown in Fig.4b

(e) EDS analysis of the steel matrix (point III) shown in Fig.4b

Fig.5  Photos of antibacterial performance on petridishes cultured with 3Cr13Mo (a) and 3Cr13MoCu stainless steels aged at 500 ℃ for 6 h (b), 10 h (c) and 14 h (d)
Fig.6  DAPI staining on surfaces of the 3Cr13Mo (a) and 3Cr13MoCu (b) stainless steels after cultured with bacterial solution for 24 h
Fig.7  Morphologies of bacterial biofilm of S. aureus on surfaces of the 3Cr13Mo (a) and 3Cr13MoCu (b) stainless steels after co-culturing for 24 h
[1] Qui H. US Pat, 13/437,679, 2012
[2] Nguyen H D N, Yuk H G. Food Control, 2013; 29: 236
[3] Wiens J R, Vasil A, Schurr M J, Vasil M L. mBio, 2014; 5: e01010
[4] Chai H, Guo L, Wang X, Fu Y, Guan J, Tan L, Ren L, Yang L. J Mater Sci Mater Med, 2011; 22: 2525
[5] Wang S, Yang C, Ren L, Shen M, Yang K. Mater Lett, 2014; 129: 88
[6] Ren L, Xu L, Feng J, Zhang Y, Yang K. J Mater Sci Mater Med, 2012; 23: 1235
[7] Nan L, Liu Y, Lv M, Yang K. J Mater Sci Mater Med, 2008; 19: 3057
[8] Arciola C R, Campoccia D, Speziale P, Montanaro L, Costerton J W. Biomaterials, 2012; 33: 5967
[9] Ren L, Yang K. J Mater Sci Technol, 2013; 29: 1005
[10] Suzuki S, Nakamura S, Miyakusu K. CAMP-ISIJ, 1999; 12: 518
[11] Yang K, Dong J S, Chen S H, Lü M Q. Chin J Mater Res, 2006; 20: 523
(杨 柯, 董加胜, 陈四红, 吕曼祺. 材料研究学报, 2006; 20: 523)
[12] Chen S H, Lü M Q, Zhang J D, Dong J S, Yang K. Acta Metall Sin, 2004; 40: 314
(陈四红, 吕曼祺, 张敬党, 董加胜, 杨 柯. 金属学报, 2004; 40: 314)
[13] Nan L, Liu Y Q, Yang W C, Xu H, Li Y, L M Q, Yang K. Acta Metall Sin, 2007; 43: 1065
(南 黎, 刘永前, 杨伟超, 徐 慧, 李 瑛, 吕曼祺, 杨 柯. 金属学报, 2007; 43: 1065)
[14] Ren L. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2012
(任 玲. 中国科学院金属研究所博士学位论文, 2012)
[15] Ren L, Yang K, Guo L, Chai H W. Mater Sci Eng, 2012; C32: 1204
[16] Ren L, Nan L, Yang K. Mater Des, 2011; 32: 2374
[17] Nan L, Cheng J, Yang K. J Mater Sci Technol, 2012; 28: 1067
[18] Wang S, Lu Z J, Yang C G, Shen M G, Yang K. Chin J Mater Res, 2014; 28: 15
(王 帅, 卢志江, 杨春光, 沈明钢, 杨 柯. 材料研究学报, 2014; 28: 15)
[19] Yuan J P, Li W, Wang C. Mater Sci Eng, 2013; C33: 446
[20] Schwartz T, Hoffmann S, Obst U. J Appl Microbiol, 2003; 95: 591
[21] Hannig C, Kirsch J, Al-Ahmad A, Hannig M, Kümmerer K. Clin Oral Invest, 2013; 17: 649
[22] Nan L, Yang W, Liu Y, Xu H, Li Y, Lu M, Yang K. J Mater Sci Technol, 2008; 24: 197
[23] Viswanathan U K, Krishnan R. Mater Sci Technol, 1989; 5: 346
[24] Xu Z,Zhao L C. Metal-Solid Phase Transformation. Beijing: Science Press, 2004: 14
(徐 洲,赵连城.金属固态相变. 北京: 科学出版社, 2004: 14)
[25] Hornbogen E, Glenn R C. Trans Metal Soc AIME, 1960; 218: 1064
[26] Wang D, Yang H, Hou L. Ordn Mater Sci Eng, 2005; 28: 25
[27] Liu Y Q. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, 2008
(刘永前. 中国科学院金属研究所博士学位论文, 2008)
[28] Davis E M, Li D, Shahrooei M, Yu B, Muruve D, Irvin R T. Acta Biomater, 2013; 9: 6236
[29] Teck L G, Valente S A, Hart-Spicer C R, Evancho-Chapman M M, Puskas J E, Horne W I, Schmidt S P. Biomed, 2013; 21: 47
[30] Anderson G G, O'toole G A. Innate and Induced Resistance Mechanisms of Bacterial Biofilms. Berlin: Springer-Berlin Heidelberg, 2008: 85
[31] Arciola C R, Campoccia D, Speziale P, Montanaro L, Costerton J W. Biomaterials, 2012; 33: 5967
[1] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[2] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[3] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[4] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[7] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[8] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
[9] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[10] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[11] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[12] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[13] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[14] LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. 金属学报, 2019, 55(10): 1291-1301.
[15] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
No Suggested Reading articles found!