EFFECT OF HEAT TREATMENT ON ANTIBACTERIAL PERFORMANCE OF 3Cr13MoCu MARTENSITIC STAINLESS STEEL
WANG Shuai1,2, YANG Chunguang2, XU Dake2, SHEN Minggang1, NAN Li2, YANG Ke2()
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:
WANG Shuai, YANG Chunguang, XU Dake, SHEN Minggang, NAN Li, YANG Ke. EFFECT OF HEAT TREATMENT ON ANTIBACTERIAL PERFORMANCE OF 3Cr13MoCu MARTENSITIC STAINLESS STEEL. Acta Metall Sin, 2014, 50(12): 1453-1460.
The effect of aging on antibacterial performance of 3Cr13MoCu martensitic stainless steel was studied by antibacterial test, Vickers hardness measurement, TEM observation, confocal laser scanning microscope (CLSM) and SEM observations. The results showed that increase of the aging temperature did favor to rapid precipitation of Cu-rich phases in the steel matrix, and correspondingly, the antibacterial rate was increased, but the hardness declined. Aging at 500 ℃ for 10~14 h could enhance both antibacterial rate and hardness due to the increase of precipitation of Cu-rich phases. Therefore the optimal heat treatment for 3Cr13MoCu martensitic stainless steel was proposed to solution at 1080 ℃ for 30 min, water cooling to room temperature, then aging at 500 ℃ for 10~14 h, air cooling to room temperature. CLSM and SEM observations indicated that 3Cr13MoCu martensitic stainless steel with optimum heat treatment could effectively killed the free bacteria and inhibited the formation of bacterial bio-films on its surface.
Fig.2 Antibacterial rate against staphylococcus aureus (S. aureus) of 3Cr13MoCu stainless steel aged at different temperatures for 6 h
Fig.3 Variation of Vickers hardness of 3Cr13MoCu stainless steel with aging temperature (aging time is 6 h)
Fig.4 TEM images of 3Cr13MoCu stainless steel (a, b) and corresponding EDS analyses(c~e)
(a) aged at 600 ℃ for 6 h (b) aged at 800 ℃for 6 h
(c) EDS analysis of Cu-rich precipitates in the steel (point I) shown in Fig.4a
(d) EDS analysis of Cu-rich precipitates in the steel (point II) shown in Fig.4b
(e) EDS analysis of the steel matrix (point III) shown in Fig.4b
Fig.5 Photos of antibacterial performance on petridishes cultured with 3Cr13Mo (a) and 3Cr13MoCu stainless steels aged at 500 ℃ for 6 h (b), 10 h (c) and 14 h (d)
Fig.6 DAPI staining on surfaces of the 3Cr13Mo (a) and 3Cr13MoCu (b) stainless steels after cultured with bacterial solution for 24 h
Fig.7 Morphologies of bacterial biofilm of S. aureus on surfaces of the 3Cr13Mo (a) and 3Cr13MoCu (b) stainless steels after co-culturing for 24 h
[1]
Qui H. US Pat, 13/437,679, 2012
[2]
Nguyen H D N, Yuk H G. Food Control, 2013; 29: 236
[3]
Wiens J R, Vasil A, Schurr M J, Vasil M L. mBio, 2014; 5: e01010
[4]
Chai H, Guo L, Wang X, Fu Y, Guan J, Tan L, Ren L, Yang L. J Mater Sci Mater Med, 2011; 22: 2525
[5]
Wang S, Yang C, Ren L, Shen M, Yang K. Mater Lett, 2014; 129: 88
[6]
Ren L, Xu L, Feng J, Zhang Y, Yang K. J Mater Sci Mater Med, 2012; 23: 1235
[7]
Nan L, Liu Y, Lv M, Yang K. J Mater Sci Mater Med, 2008; 19: 3057
[8]
Arciola C R, Campoccia D, Speziale P, Montanaro L, Costerton J W. Biomaterials, 2012; 33: 5967
[9]
Ren L, Yang K. J Mater Sci Technol, 2013; 29: 1005
[10]
Suzuki S, Nakamura S, Miyakusu K. CAMP-ISIJ, 1999; 12: 518
[11]
Yang K, Dong J S, Chen S H, Lü M Q. Chin J Mater Res, 2006; 20: 523
(杨 柯, 董加胜, 陈四红, 吕曼祺. 材料研究学报, 2006; 20: 523)
[12]
Chen S H, Lü M Q, Zhang J D, Dong J S, Yang K. Acta Metall Sin, 2004; 40: 314
(陈四红, 吕曼祺, 张敬党, 董加胜, 杨 柯. 金属学报, 2004; 40: 314)
[13]
Nan L, Liu Y Q, Yang W C, Xu H, Li Y, L M Q, Yang K. Acta Metall Sin, 2007; 43: 1065