Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (10): 1260-1268    DOI: 10.11900/0412.1961.2014.00137
Current Issue | Archive | Adv Search |
INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE
TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting(), ZHOU Lanzhang
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

TAN Meilin, WANG Changshuai, GUO Yongan, GUO Jianting, ZHOU Lanzhang. INFLUENCE OF Ti/Al RATIOS ON γ′ COARSENING BEHAVIOR AND TENSILE PROPERTIES OF GH984G ALLOY DURING LONG-TERM THERMAL EXPOSURE. Acta Metall Sin, 2014, 50(10): 1260-1268.

Download:  HTML  PDF(6558KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

GH984G is a new Ni-Fe-Cr base alloy which has been designed for use as superheater, reheater and header materials for boilers in 700 ℃ advanced ultra-supercritical (A-USC) coal-fired power plants. Compared with the CCA617, Nimonic 263 and IN 740 alloys, the GH984G is an economic alloy due to the elimination of Co and it containing more than 20%Fe. As a precipitation hardened alloy, the size of γ′ precipitates has great influence on the tensile properties. The γ′ precipitates become coarse during long-term thermal exposure. The coarsening behavior of γ′ precipitates is closely related with Ti/Al ratio. However, there are few investigations about the influence of Ti/Al ratio on the coarsening behavior of γ′ precipitates of GH984G alloy. Therefore, in this work, the coarsening behavior of γ′ precipitates and its influence on tensile properties of GH984G alloy with two Ti/Al ratios was investigated during long-term thermal exposure. The results show that the growth kinetic of the γ′ precipitates can be explained by Lifshitz-Slyozov-Wagner's theory of element diffusion controlled coarsening during long-term thermal exposure at 700 and 750 ℃. The rate of γ′ precipitates growth of the alloy with high Ti/Al ratio is higher. At 800 ℃, the rate of γ′ precipitates growth decreases with increasing the thermal exposure time. The coarsening behavior does not follow the Lifshitz-Slyozov-Wagner's theory. The reasons are attributed to the effect of elastic interaction energy and the depletion of γ′-forming elements in γ matrix. The Ti/Al ratio has no obvious influence on 700 ℃ tensile properties during long-term thermal exposure between 700 and 800 ℃. The 700 ℃ yield strength has no obviously decreases even if after thermal exposure at 700 ℃ for 10480 h. The ductility increases after thermal exposure at 800 ℃. The variation of strength and ductility is attributed to the coarsening of γ′ precipitation. The deformation mechanism is the moving dislocations shear γ′ precipitates and the stacking faults form in γ′ precipitates. The fracture mode is the mixture fracture mode. The Ti/Al ratio has no significance influence on the deformation mechanism and the fracture mode.

Key words:  Ni-Fe-Cr base superalloy      long-term aging      γ′ precipitate      coarsening kinetics      tensile property     
Received:  24 March 2014     
ZTFLH:  TG111.8  
Fund: Supported by National High Technology Research and Development Program of China (No.2012AA03A501), National Natural Science Foundation of China (No.51301171), National Energy Administration Program of China (No.NY20110102-1) and Chinese Academy of Sciences and Sichuan Province Cooperation Program

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00137     OR     https://www.ams.org.cn/EN/Y2014/V50/I10/1260

Alloy C B Cr Mo+Nb Fe Al Ti Ti+Al Ni Ti/Al
G1 0.04 0.006 20.1 3.41 20.5 0.98 0.99 1.97 Bal. 1.00
G2 0.04 0.006 20.0 3.44 20.6 0.83 1.18 2.01 Bal. 1.42
Table1  Chemical compositions of GH984G alloy
Fig.1  OM images showing microstructures of GH984G alloy after standard heat treatment with Ti/Al=1.00 (a) and Ti/Al=1.42 (b)
Fig.2  Precipitates after standard heat treatment and EDS (a) SEM image of Ti/Al=1.00(b) SEM image of Ti/Al=1.42(c) EDS of MC with the SAEDP in the inset(d) EDS of M23C6 with the SAEDP in the inset (e) TEM image of the ultrafine coherent g′ precipitates
Fig.3  γ ′ morphologies of high Ti/Al ratio GH984G alloy after thermal exposure at 750 ℃ for 1×103 h (a), 3×103 h (b), 5×103 h (c) and 1×103 h (d)
Fig.4  Evolutions of average particle size of γ′ precipitatesat 700, 750 and 800 ℃
Fig.5  γ/ γ′ misfits of different Ti/Al ratio GH984G alloys after long-term aging at 750 ℃
Temperature / ℃ Al Ti
700 1.46×10-9 7.10×10-9
750 8.10×10-9 3.33×10-8
800 3.85×10-8 1.37×10-7
Table 2  Diffusion coefficients of Al, Ti elements in γ matrix
Fig.6  Growth kinetics of γ′ precipitates of GH984G alloy with Ti/Al=1.00 (a) and Ti/Al=1.42 (b)
Alloy state Rm / MPa Rp0.2 / MPa d / % y / %
Ti/Al=1.00 Ti/Al=1.42 Ti/Al=1.00 Ti/Al=1.42 Ti/Al=1.00 Ti/Al=1.42 Ti/Al=1.00 Ti/Al=1.42
Standard heat
treatment
733 745 477 480 42 44 45.0 42.5
700 ℃ / 10480 h 745 745 545 535 40 42 43.0 45.0
750 ℃ / 10480 h 640 660 385 400 40 42 43.5 48.5
800 ℃ / 10480 h 560 565 265 250 64 61 60.0 59.0
Table 3  Effects of long-term aging on tensile properties of GH984G alloy
Fig.7  SEM images of 700 ℃ tensile fracture surface thermally exposed at 700 ℃ (a), 750 ℃ (b) and 800 ℃ (c) for 10480 h, and TEM image of γ′ phase in 700 ℃ tensile specimen after aging at 750 ℃ for 10480 h (d)
Fig.8  Measured critical resolved shear stress Δτ0 vs size of γ′ precipitate for GH984G with different Ti/Al ratiosions
  
[1] Evans N D, Maziasz P J, Swindeman R W, Smith G D. Scr Mater, 2004; 51: 503
[2] Rosler J, Gotting M, Genovese D. Adv Eng Mater, 2003; 5: 469
[3] Viswanathan V, Purgert R, Rawls P. Adv Mater Processes, 2008; 166: 47
[4] Zhao S Q, Xie X S, Smith G D, Patel S J. Mater Sci Eng, 2003; A355: 96
[5] Guo J T, Du X K. Acta Metall Sin, 2005; 41: 1221
(郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)
[6] Wu Q, Song H, Swindeman R W, Shingledecher J P, Vasudevan V K. Metall Mater Trans, 2008; 39: 2569
[7] Krishna R, Hainsworth S V,Gill S P A, Strang A, Atrinson H V. Metall Mater Trans, 2013; 44: 1419
[8] Rautio R, Bruce S. Adv Mater Processes, 2008; 166: 35
[9] Shingledecker J P, Pharr G M. Metall Mater Trans, 2012; 43A: 1902
[10] Tokairin T, Dahl K V, Danielsen H K, Grumsen F B, Sato T, Hald J. Mater Sci Eng, 2013; A565: 285
[11] Li J, Wahi R P. Acta Metall Mater, 1995; 43: 507
[12] Sheng L Y, Wang L J, Xi T F, Zheng Y F, Ye H Q. Mater Des, 2011; 32: 4810
[13] Wang C S,Wang T T,Tan M L,Guo Y A,Guo J T,Zhou L Z. J Mater Sci Technol, 2014;
[14] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35
[15] Wagner C. Z Elektrochem, 1961; 65: 581
[16] Ardell A J. Acta Metall, 1972; 20: 61
[17] Voorhees P W, Glicksman M E. Acta Metall, 1984; 32: 51
[18] Enomoto Y, Tokuyama M, Kawasaki K. Acta Metall, 1986; 34: 2119
[19] Muralidharan G, Chen H. Adv Mater, 2000; 1: 51
[20] Xiao X, Zhao H Q, Wang C S, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2013; 49: 421
(肖 旋, 赵海强, 王常帅, 郭永安, 郭建亭, 周兰章. 金属学报, 2013; 49: 421)
[21] Guo J T. Acta Metall Sin, 1978; 3: 227
(郭建亭. 金属学报, 1978; 3: 227)
[22] Qin X Z. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2004
(秦学智.中国科学院金属研究所博士学位论文, 沈阳, 2004)
[23] Hou J S, Guo J T, Zhou L Z. Acta Metall Sin, 2006; 42: 481
(侯介山, 郭建亭, 周兰章. 金属学报, 2006; 42: 481)
[24] Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183
[25] Sims C T,Stoloff N S,Hagel W C,translated by Zhao J,Zhu S J,Li X G,Wang F G. Superalloy. Dalian: Dalian Uuniversity of Technology Press, 1992: 69
(Sims C T,stoloff N S,Hagel W C著;赵 杰,朱世杰,李晓刚,王富岗 译. 高温合金. 大连: 大连理工大学出版社,1992: 69)
[26] Minamino Y, Jung S B, Yamane T, Hirao K. Metall Mater Trans, 1992; 23: 2783
[27] Gomez-Acebo T, Navarcorena B, Castro F. J Phase Equilib, 2004; 25: 237
[28] Ges A, Fornaro O, Palacio H. J Mater Sci, 1997; 32: 3687
[29] Berahmand M, Sajjadi S A. Taylor Francis Online, 2012; 8: 85
[30] Hou J S, Zhang Y L, Guo J T, Ji G, Zhou L Z, Ye H Q. Acta Metall Sin, 2004; 40: 579
(侯介山, 张玉龙, 郭建亭, 冀 光, 周兰章, 叶恒强. 金属学报, 2004; 40: 579)
[31] Jackson M P, Reed R C. Mater Sci Eng, 1999; A259: 85
[32] Huther W, Reppich B. Z Metall, 1978; 69: 628
[33] Reppich B. Acta Metall, 1982; 30: 87
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[3] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[4] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[5] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[9] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[10] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[11] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[13] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[14] Jinxia YANG,Futao XU,Donglin ZHOU,Yuan SUN,Xingyu HOU,Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature[J]. 金属学报, 2017, 53(6): 703-708.
[15] Mingzhe XI,Wei ZHOU,Junying SHANG,Chao LV,Zhenhao WU,Shiyou GAO. Effect of Heat Treatment on Microstructure and Mechanical Properties of Consecutive Point-Mode Forging and Laser Rapid Forming GH4169 Alloy[J]. 金属学报, 2017, 53(2): 239-247.
No Suggested Reading articles found!