Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1046-1054    DOI: 10.11900/0412.1961.2013.00843
Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY
CHE Xin1, LIANG Xingkui2, CHEN Lili3, CHEN Lijia1, LI Feng1
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870; 2 New Northeast Electric (Shenyang) High Voltage Switchgear Co. Ltd, Shenyang 110025; 3 Shenyang Aerosun-Futai Expansion Joint Co. Ltd, Shenyang 110141
Download:  HTML  PDF(4169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The Al-Si-Cu-Mg cast aluminum alloys have high mechanical properties and good cast performance. Due to their excellent comprehensive properties, the Al-Si-Cu-Mg cast aluminum alloys have wide application, and have become one of the most important structural materials applied in the equipment manufacturing industry. Actually, many key components in practical engineering application are often subjected to the alternating load, and thus the fatigue failure has become an important factor which concerns the safety and economy for those structures used in various engineering fields. Although some researches for the fatigue behavior of aluminum alloys have been performed, mainly focus on the regularity understanding. Especially, the influences of rare earth elements and heat-treat condition on the low-cycle fatigue behavior of aluminum alloys have not been comprehensively revealed. Obviously, the investigation concerning the microstructure and fatigue property of the Al-Si-Cu-Mg cast aluminum alloys can not only provide the theoretical basis for the development of new type cast aluminum alloys but also the reliable theoretical foundation for the safety design and reasonable use of these alloys. In order to determine the influence of rare earth element Sc on the low-cycle fatigue behavior of casting Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state, the cyclic stress response behavior, fatigue life behavior and cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) cast aluminum alloys with T6 treated states under low-cycle fatigue loading condition were investigated. The results show that at the low total strain amplitude, the Al-9.0%Si-4.0%Cu-0.4%Mg alloy exhibits the cyclic strain hardening during whole fatigue deformation, while the Al-9.0%Si-4.0%Cu-0.4%Mg-0.3%Sc alloys exhibit the cyclic strain hardening in the initial stage of fatigue deformation and then the stable cyclic stress response in the later stage of fatigue deformation. At the higher total strain amplitudes, the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys exhibit the cyclic strain hardening. The addition of Sc can effectively enhance the cyclic deformation resistance and prolong the fatigue lives of the Al-9.0%Si-4.0%Cu-0.4%Mg alloy with T6 treated state. At the lower total strain amplitudes, the cyclic deformation mechanism of the Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) alloys with T6 treated state is the plane slip, while at the higher total strain amplitudes, the cyclic deformation mechanism becomes the wavy slip.
Key words:  Al-Si-Cu-Mg alloy      Sc      T6 treatment      low-cycle fatigue      fatigue life      cyclic stress response      cyclic deformation mechanism     
ZTFLH:  TG146.2  
Fund: ; Supported by Science and Technology Research of Education Department of Liaoning Province (No.L2013056)
Corresponding Authors:  Correspondent: CHEN Lijia, professor, Tel:(024)25494501, E-mail: chenlj-sut@163.com     E-mail:  chenlj-sut@163.com

Cite this article: 

CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY. Acta Metall Sin, 2014, 50(9): 1046-1054.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2013.00843     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1046

[1] Wang X, Chen G Q, Li B, Wu L M, Jiang D M. Rare Met, 2010; 29(1): 66
[2] Mo D F, He G Q, Hu Z F, Zhang W H. J Mater Eng, 2010; (7): 92 (莫德峰, 何国球, 胡正飞, 张卫华. 材料工程, 2010; (7): 92)
[3] Wang G Q, Bian X F, Wang W M, Zhang J Y. Mater Lett, 2003; 57: 4083
[4] Moizumi K, Mine K, Tezuka H, Sato T. Mater Sci Forum, 2002; 396-402: 1371
[5] Caceres C H, Griffiths J R, Reiner P. Acta Mater, 1996; 44: 15
[6] Wang Q G, Caceres C H, Griffiths J R. Metall Mater Trans, 2003;34A: 2901
[7] Cheng Z Z, Xie C H, Zhu C X. Light Met, 2010; (7): 58 (陈振中, 解传浩, 朱成香. 轻金属, 2010; (7): 58 )
[8] Bray G H, Glazov M, Rioja R J, Li D, Gangloff R P. Int J Fatigue, 2001; 23: 265
[9] Manson S S. Exp Mech, 1965; 5: 193
[10] Nieslony A, Dsoki C E, Kaufmann H, Krug. Int J Fatigue, 2008; 30: 1967
[11] Miura Y, Joh C H, Katsube T. Mater Sci Forum, 2000; 331-337: 1031
[12] Zhou K, Li Y Q. Chin J Nonferrous Met, 1997; 7: 97 (周 昆, 李云卿. 中国有色金属学报, 1997; 7: 97)
[13] Kendig K L, Miracle D B. Acta Mater, 2002; 50: 4165
[14] Li F, Wang Y, Chen L J, Zheng L, Zhou J Y. J Mater Sci, 2005; 40: 1529
[15] Kendig K L, Miracle D B. Acta Mater, 2004; 50: 4165
[16] Sj?lander E, Seifeddine S. J Mater Process Technol, 2010; 210: 1249
[17] Kim M, Hong Y, Cho H. Met Mater Int, 2004; 10: 513
[18] Zhou M Z. PhD Dissertation, Central South University, Changsha, 2010 (周明哲. 中南大学博士学位论文, 长沙, 2010)
[19] Dvydov V G, Rostova T D, Zakharov V V, Filatov Y A, Yelagin V I. Mater Sci Eng, 2000; A280: 30
[20] Watanabe C, Jin C Y, Monzen R, Kitagawa K. Mater Sci Eng, 2004; A387-389: 552
[21] Lados D A, Apelian D. Mater Sci Eng, 2004; A385: 200
[22] Lee F T, Major J F, amuel F H. Metall Mater Trans, 1995; 26A: 1553
[23] Li M J, Hu H Y, Xing X S. Acta Phys Sin, 2003; 52: 2092 (李眉娟, 胡海云, 邢修三. 物理学报, 2003; 52: 2092 )
[24] Yin Z M, Pan Q L, Zhang Y H, Jiang F. Mater Sci Eng, 2000; A280: 151
[25] Saisrinadh K V, Singh V. Metall Mater Trans, 2007; 38A: 1868
[26] Chen L J, Wu W, Liaw P K. Acta Metall Sin, 2006; 42: 952 (陈立佳, 吴 崴, Liaw P K. 金属学报, 2006; 42: 952)
[27] Singh V, Sundararaman M, Chen W, Wahi R P. Metall Trans, 1991; 22A: 499
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[3] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[4] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[5] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[6] LIU Xingjun, CHEN Yuechao, LU Yong, HAN Jiajia, XU Weiwei, GUO Yihui, YU Jinxin, WEI Zhenbang, WANG Cuiping. Present Research Situation and Prospect of Multi-Scale Design in Novel Co-Based Superalloys: A Review[J]. 金属学报, 2020, 56(1): 1-20.
[7] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[8] Li ZHOU,Pengfei ZHANG,Quanzhao WANG,Bolü XIAO,Zongyi MA,Tao YU. Multi-Scale Study on the Fracture Behavior of Hot Compression B4C/6061Al Composite[J]. 金属学报, 2019, 55(7): 911-918.
[9] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[10] Bin CHEN,Jie HE,Xiaojun SUN,Jiuzhou ZHAO,Hongxiang JIANG,Lili ZHANG,Hongri HAO. Liquid-Liquid Phase Separation of Fe-Cu-Pb Alloy and Its Application in Metal Separation and Recycling of Waste Printed Circuit Boards[J]. 金属学报, 2019, 55(6): 751-761.
[11] Xingchen CHEN, Jie WANG, Deren CHEN, Shuncong ZHONG, Xiangfeng WANG. Effect of Na on Early Atmospheric Corrosion of Al[J]. 金属学报, 2019, 55(4): 529-536.
[12] Lin ZHANG,Tiannan MAN,Engang WANG. Influence of Dispersed Solid Particles on the Liquid-Liquid Separation Process of Al-Bi Alloys[J]. 金属学报, 2019, 55(3): 399-409.
[13] Yaohong LIU,Zhaohui WANG,Ke LIU,Shubo LI,Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys[J]. 金属学报, 2019, 55(3): 389-398.
[14] Houpu WU,Xiubo TIAN,Xinyu ZHANG,Chunzhi GONG. Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate[J]. 金属学报, 2019, 55(3): 299-307.
[15] Shuangjie CHU,Yongjie YANG,Zhenghua HE,Yuhui SHA,Liang ZUO. Calculation of Magnetostriction Coefficient for Laser-Scribed Grain-Oriented Silicon Steel Based onMagnetic Domain Interaction[J]. 金属学报, 2019, 55(3): 362-368.
No Suggested Reading articles found!