Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (4): 507-514    DOI: 10.3724/SP.J.1037.2013.00606
Current Issue | Archive | Adv Search |
A THERMODYNAMIC MODEL FOR DIRECTIONAL SOLIDIFICATION OF METAL-HYDROGEN EUTECTIC
LI Zaijiu, JIN Qinglin(), YANG Tianwu, ZHOU Rong, JIANG Yehua
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
Cite this article: 

LI Zaijiu, JIN Qinglin, YANG Tianwu, ZHOU Rong, JIANG Yehua. A THERMODYNAMIC MODEL FOR DIRECTIONAL SOLIDIFICATION OF METAL-HYDROGEN EUTECTIC. Acta Metall Sin, 2014, 50(4): 507-514.

Download:  HTML  PDF(3735KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the thermodynamic analysis on directional solidification of metal-hydrogen eutectic, a theoretical model was developed to predict the effect of the Gasar processing parameters on the pore diameter and inter-pore spacing. The model was applied for the Gasar porous Cu fabricated by continuous casting process. The average pore diameter and inter-pore spacing decrease as increasing withdrawal rate. The theoretical relationship between the inter-pore spacing l and the withdrawal rate v can be described by a simple equation vl2=B, where B is a constant depending on the melt temperature and hydrogen gas pressure. The model can predict the overall tendency of the experimental results. The deviation between the calculated and experimental values in the case of lower withdrawal rate is considered to be associated with the difference between the real pore structure and ideal pore structure, and the melt convection in the vicinity of solid/liquid interface.

Key words:  porous metal      metal-hydrogen eutectic      inter-pore spacing      withdrawal rate     
Received:  23 September 2013     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China and Yunnan Provincial Government (No.u0837603) and National Natural Science Foundation of China (No.51164018)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00606     OR     https://www.ams.org.cn/EN/Y2014/V50/I4/507

Fig.1  

金属-氢共晶相图

  

1 mol金属-氢系统中, 液相的自由能-成分曲线(选择固态金属和气态氢为标准态)

Fig.3  

金属-氢共晶凝固中的气孔结构几何模型

Fig.4  Schematic of the phase diagram for a 1 mole system of metal-hydrogen (a) and the corresponding free energy-composition curve at the undercooled temperature of TE- DTdiff (b) ( μ M L , 1 (point a') represents the chemical potential of the liquid metal ahead of the solid phase; and μ H L , 1 (point c) represents the hydrogen chemical potential ahead of the solid phase; μ M L , 2 (point d) represents the chemical potential of the liquid metal ahead of the gas phase; μ H L , 2 (point b') represents the hydrogen chemical potential ahead of the gas phase. The length ad represents Δ μ H = μ H L , 1 - G H g , the driving force for the diffusion of metal atom; and the length cb represents ΔμH (= μL,1H - G gH),the driving force for the diffusion of hydrogen)
Fig.5  

连铸工艺制备Gasar多孔Cu装置示意图

Fig.6  

H2压力为0.6 MPa下获得的Gasar多孔Cu连铸试样横、纵截面图

Fig.7  

H2压力为1.0 MPa下获得的Gasar多孔Cu连铸试样横、纵截面图

Parameter Value Unit Ref.
XL 2.183 × 10 - 5 e x p ( - 5.234 × 10 3 T ) ? p H 2 Mole fraction [21]
XS 1.379 × 10 - 5 e x p ( - 5.888 × 10 3 T m ) ? p p o r e Mole fraction [21]
ML 132200 mol/ m3 [22]
Tm 1356 K [22]
ph 0.009408 MPa [16]
pC 0.004720 MPa [13]
DH 10.92 × 10 - 7 e x p ( - 2148 R T m ) m2/ s [23]
R 8.314 J/(mol·K) [20]
ss/g 1.75 J/m2 [24]
k 0.35 [20]
表1  Cu-H2 系计算参数
Fig.8  

不同下拉速率条件下制得的Gasar多孔Cu的气孔间距及气孔直径与理论计算值的比较

[1] Shapovalov V I. US Pat, 5181549, 1993
[2] Liu Y, Li Y X, Zhang H W. Acta Metall Sin, 2004; 40: 1121
(刘 源, 李言祥, 张华伟. 金属学报, 2004; 40: 1121 )
[3] Liu P S. Introduction to Cellular Materials. Beijing: Tsinghua University Press, 1999: 6
(刘培生. 多孔材料引论. 北京: 清华大学出版社, 1999: 6)
[4] Simone A E, Gibson L J. Acta Mater, 1996; 44: 1437
[5] Nakajima H, Hyun S K, Ohashi K, Ota K, Murakami K. Colloids Surf, 2001; 179A: 209
[6] Li Z J, Jin Q L, Yang T W, Jiang Y H, Zhou R. Acta Metall Sin, 2013; 49: 757
(李再久, 金青林, 杨天武, 蒋业华, 周 荣. 金属学报, 2013; 49: 757)
[7] Liu Y, Li Y X, Zhang H W, Wan J. Acta Metall Sin, 2005; 41: 886
(刘 源, 李言祥, 张华伟, 万 疆. 金属学报, 2005; 41: 886 )
[8] Xie J X, Liu X H, Liu X F, Fang Y C, Wang H. Chin J Nonferrous Met, 2005; 15: 1869
(谢建新, 刘新华, 刘雪峰, 方玉诚, 王 浩. 中国有色金属学报, 2005; 15: 1869)
[9] Simone A E, Gibson L J. J Mater Sci, 1997; 32: 451
[10] Nakajima H. Progr Mater Sci, 2007; 52: 1091
[11] Peng Z, Yang T W, Li Z J, Li Z H, Jin Q L, Zhou R. Chin J Nonferrous Met, 2011; 21: 1045
(彭 震, 杨天武, 李再久, 黎振华, 金青林, 周 荣. 中国有色金属学报, 2011; 21: 1045)
[12] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2006; 42: 1165
(张华伟, 李言祥, 刘 源. 金属学报, 2006; 42: 1165)
[13] Liu Y, Li Y X. Scr Mater, 2003; 49: 379
[14] Upadhyaya G S,Dube R K. Problems in Metallurgical Thermodynamics and Kinetics. Oxford: Pergamon Press, 1977: 144
[15] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2007; 43: 113
(张华伟, 李言祥, 刘 源. 金属学报, 2007; 43: 113)
[16] Zhang H W. PhD Dissertation, Tsinghua University, Beijing, 2006
(张华伟. 清华大学博士学位论文, 北京, 2006)
[17] Zhang H W, Li Y X, Liu Y. Acta Metall Sin, 2005; 41: 55
(张华伟, 李言祥, 刘 源. 金属学报, 2005; 41: 55)
[18] Flemings M C. Solidification Processing. Newyork: McGraw-Hill Book Company, 1974: 264
[19] Nishizawa T. Translated by Hao S M. Thermodynamics of Microstructure. Beijing: Chemical Industry Press, 2006: 264
(Nishizawa T著. 郝士明 译. 微观组织热力学. 北京: 化学工业出版社, 2006: 264)
[20] Liu Y, Li Y X, Liu R F, Zhou R, Jiang Y H, Li Z H. Acta Metall Sin, 2010; 46: 129
(刘 源, 李言祥, 刘润发, 周 荣, 蒋业华, 黎振华. 金属学报, 2010; 46: 129)
[21] Yamamura S, Shiota H, Murakami K, Nakajima H. Mater Sci Eng, 2001; A318: 137
[22] Drenchev L, Sobczak J, Sobczak N, Sha W, Malinov S. Acta Mater, 2007; 55: 6459
[23] Sacris E M, Parlee A D. Metall Trans, 1970; 1: 3377
[24] Martin J W,Doherty. Stability of Microstructure in Metallic System. London: Cambridge University Press, 1976: 159
[25] Park J S, Hyun S K, Suzuki S, Nakajima H. Acta Mater, 2007; 55: 5646
[1] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[3] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[4] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[5] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(11): 1374-1380.
[6] GE Bingming LIU Lin ZHANG Shengxia ZHANG Jun LI Yafeng FU Hengzhi. INFLUENCE OF WITHDRAWAL RATE ON MICROSTRUCTURES OF BLADE SHAPED DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY[J]. 金属学报, 2011, 47(11): 1470-1476.
[7] LIU Yuan LI Yanxiang LIU Runfa ZHOU Rong JIANG Yehua LI Zhenhua. THEORETICAL ANALYSIS ON EFFECT OF TRANSFERENCE VELOCITY ON STRUCTURE OF POROUS METALS FABRICATED BY CONTINUOUS CASTING GASAR PROCESS[J]. 金属学报, 2010, 46(2): 129-134.
[8] JIANG Liwu LI Shusuo QIU Zicheng HAN Yafang . EFFECTS OF WITHDRAWAL RATE ON MICROSTRUCTURE AND STRESS RUPTURE PROPERTIES OF A Ni3Al–BASED SINGLE CRYSTAL SUPERALLOY IC6SX[J]. 金属学报, 2009, 45(5): 547-552.
[9] . Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic[J]. 金属学报, 2008, 44(9): 1057-1062 .
[10] Hua-Wei ZHANG. The Critical Processing Conditions for Directional Solidification of Solid/Gas Eutectics[J]. 金属学报, 2007, 43(6): 589-594 .
[11] Hua-Wei ZHANG. Hydrogen Solubility in Pure Metals for Gasar Process[J]. 金属学报, 2007, 43(2): 113-118 .
[12] Hua-Wei ZHANG. Difficulty in Fabricating Lotus-type Porous Al by Gasar Process[J]. 金属学报, 2007, 42(1): 11-16 .
[13] QIU K Q. FABRICATION OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS FOAM[J]. 金属学报, 2006, 42(4): 379-382 .
[14] ZHANG Huawei; LI Yanxiang; LIU Yuan. Gas Pressure Condition for Obtaining Uniform Lotus--Type Porous Structure by Gasar Process[J]. 金属学报, 2006, 42(11): 1171-1176 .
[15] ZHANG Huawei; LI Yanxiang; LIU Yuan. Evaluation of Porosity in Lotus--Type Porous Cu Fabricated with Gasar Process[J]. 金属学报, 2006, 42(11): 1165-1170 .
No Suggested Reading articles found!