Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (6): 641-648    DOI: 10.3724/SP.J.1037.2012.00762
Current Issue | Archive | Adv Search |
LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Download:  PDF(4305KB) 
Export:  BibTeX | EndNote (RIS)      

The near isothermal canned hot extrusion at a temperature close to α transus temperature was used to fabricate Ti-45.5Al-2Cr-2Nb-0.15B alloy rod. Microstructures and tensile properties of samples taken from different locations of the extrudate were compared with each other, and the formation mechanism of extrusion microstructure was investigated in combination with the finite element simulation. It was found that lamellar grains were significantly refined by hot extrusion. Microstructure and tensile elongation were homogeneous along the axial direction of extruded rods, but heterogeneous along the radial direction. The center of rods with coarse fully-lamellar microstructure had low tensile elongation, and the edge of rods with fine near lamellar microstructure had high tensile elongation. Such heterogeneities could not be eliminated in subsequent α solid solution treatment. Lamellar grain size decreased with increasing effective strain. There existed the refined homogeneous microstructure in the regions with effective strain larger than 2.25. The difference of microstructure type was mainly due to different temperatures of different parts of rods during extrusion process. In the edge of rod tails, the γ phase lamellar structure precipitated from α phase was formed due to the chilling effect caused by contacting with the cold die, then the lamellar structure with tortuous boundary was formed in subsequent deformation. Tensile elongation was found to decrease with increasing lamellar grain size, but the poor tensile elongation in the center was mainly attributed to the existence of lamellar grains which lamellar boundaries were nearly perpendicular to the extrusion direction.

Key words:  γ-TiAl base alloy      canned hot extrusion      finite element simulation      fully-lamellar microstructure      tensile property     
Received:  24 December 2012     

Cite this article: 

LIU Renci, WANG Zhen, LIU Dong, BAI Chunguang, CUI Yuyou, YANG Rui. MICROSTRUCTURE AND TENSILE PROPERTIES OF Ti-45.5Al-2Cr-2Nb-0.15B ALLOY PROCESSED BY HOT EXTRUSION. Acta Metall Sin, 2013, 49(6): 641-648.

URL:     OR

[1] Dimiduk D M.  Mater Sci Eng, 1999; A263: 281

[2] Appel F, Brossmann U, Christoph U, Eggert S, Janschek P, Lorenz U,Mullauer J, Oehring M, Paul J D H.  Adv Eng Mater, 2000; 2: 699
[3] Appel F, Oehring M, Paul J D H, Klinkenberg C, Carneiro T. Intermetallics, 2004; 12: 791
[4] Kim Y W.  Acta Metall Mater, 1992; 40: 1121
[5] Koeppe C, Bartels A, Seeger J, Mecking H.  Metall Mater Trans, 1993;24A: 1795
[6] Seetharaman V, Malas J C, Lombard C M. In: Johnson L A, Pope D P,Stiegler J O eds.,  High-Temperature Ordered Intermetallic Alloys IV. Boston,MA: MRS, 1991: 889
[7] Semiatin S L, Seetharaman V, Jain V K.  Metall Mater Trans, 1994; 25A:2753
[8] Semiatin S L. In: Kim Y W, Wagner R, Yamaguchi M eds.,  Gamma Titanium Aluminides 1995.Las Vegas, NV: TMS, 1995: 509
[9] Oehring M, Lorenz U, Niefanger R, Christoph U, Appel F, Wagner R,Clemens H, Eberhardt N. In: Kim Y W, Dimiduk D M, Loretto M H eds., Gamma Titanium Aluminides 1999. San Diego, CA: TMS, 1999: 439
[10] Xie J X, Liu J A.  Metal Extrusion: Fundamental and Technology.Beijing: Metallurgical Industry Press, 2002: 8
 (谢建新, 刘静安. 金属挤压理论与技术. 北京: 冶金工业出版社, 2002: 8)
[11] Liu C T, Schneibel J H, Maziasz P J, Wright J L, Easton D S. Intermetallics, 1996; 4: 429
[12] Goetz R, Jain V, Lombard C.  J Mater Process Technol, 1992; 35: 37
[13] Liu D.  PhD Dissertation, Institute of Metal Research, Chineses Academy of Sciences, Shenyang, 2007
 (刘冬. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[14] Cui Y Y.  PhD Dissertation, Institute of Metal Research, Chineses Academy of Sciences,Shenyang, 2004
 (崔玉友. 中国科学院金属研究所博士学位论文, 沈阳, 2004)
[15] Bai C G.  PhD Dissertation, Institute of Metal Research, Chineses Academy of Sciences,Shenyang, 2007
 (柏春光. 中国科学院金属研究所博士学位论文, 沈阳, 2007)
[16] Goetz R L, Semiatin S L.  J Mater Eng Perfor, 2001; 10: 710
[17] Seetharaman V, Semiatin S L.  Metall Mater Trans, 1996; 27A: 1987
[18] Kim Y W, Dimiduk D M. In: Hemker K J, Dimiduk D M, Clemens D, Darolio
R, Inui H, Larson J M, Sikka V K, Thomas M, Whittenberger J D eds., Structural Intermetallics 2001. Wyoming: TMS, 2001: 625
[19] Semiatin S, Dimiduk D M, Ashbee K, Seetharaman V.  Metall Mater Trans, 1998; 29A: 7
[20] Maziasz P, Liu C T.  Metall Mater Trans, 1998; 29A: 105
[21] Kim Y W.  Mater Sci Eng, 1995; A192-193: 519
[22] Fuchs G E. In: Kim Y W, Wagner R, Yamaguchi M eds.,  Gamma Titanium Aluminides 1995. Las Vegas, NV:TMS, 1995: 563
[23] Fuchs G E.  Metall Mater Trans, 1998; 29A: 27
[24] Inui H, Oh M H, Nakamura A, Yamaguchi M.  Acta Metall Mater, 1992; 40: 3095
[25] Umakoshi Y, Nakano T.  Acta Metall Mater, 1993; 41: 1155
[26] Leyens C, Peters M, translated by Chen Z H.  Titanium and Titanium Alloy. Beijing:Chemical Industry Press, 2005: 88
 (Leyens C, Peters M著, 陈振华 译. 钛与钛合金. 北京: 化学工业出版社, 2005: 88)
[1] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[2] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[3] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[4] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[5] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[6] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[7] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[8] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[9] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[10] Shu WEN, Anping DONG, Yanling LU, Guoliang ZHU, Da SHU, Baode SUN. Finite Element Simulation of the Temperature Field and Residual Stress in GH536 Superalloy Treated by Selective Laser Melting[J]. 金属学报, 2018, 54(3): 393-403.
[11] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] Jialin LIU, Yumin WANG, Guoxing ZHANG, Xu ZHANG, Lina YANG, Qing YANG, Rui YANG. Research on Single SiC Fiber Reinforced TC17 CompositesUnder Transverse Tension[J]. 金属学报, 2018, 54(12): 1809-1817.
[13] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[14] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[15] Yu LIU, Shengwei QIN, Xunwei ZUO, Nailu CHEN, Yonghua RONG. Finite Element Simulation and Experimental Verification of Quenching Stress in Fully Through-Hardened Cylinders[J]. 金属学报, 2017, 53(6): 733-742.
No Suggested Reading articles found!