Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 605-613    DOI: 10.3724/SP.J.1037.2012.00708
Current Issue | Archive | Adv Search |
MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL
XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL. Acta Metall Sin, 2013, 49(5): 605-613.

Download:  PDF(5423KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

2Cr13 martensitic stainless steel is widely used in the manufacturing of heavy load components,which are easy to be damaged due to their severe service environment. If these damaged components can be repaired rapidly, considerable savings in materials, processing and time costs can be achieved. Four kinds of laser forming repairing for 2Cr13 stainless steel sample, single-track single-layer, multi-track single-layer, single-track multi-layer and multi-track multi-layer, was conducted to investigate their microstructure characteristic and evolution of heat-affected zone (HAZ). The formation mechanism of microstructure was analyzed based on the temperature field simulation. It is found that microstructure varies continuously from substrate zone (SZ) to the bottom of laser repaired zone (RZ), in which the main phases varied asα ferrite→α ferrite+ martensite →martensite+α ferrite→martensite, and the appearance of the martensite led to a rapid increase in hardness. Meanwhile, the primary M23C6 dissolved gradually and disappeared eventually. It is interesting to note that the dissolving of intragranular carbides occurred prior to the intergranular carbides. With the carbides dissolving, δ ferrite particles appeared, coarsened and connected into skeleton patterns eventually when closing to the bottom of RZ. As the deposited layers increased, the hardness peak decreased, and the grains were refined in the partial region of the middle of HAZ. The carbides precipitated again in the grain boundary at the top of HAZ, meanwhile, δ skeleton is gradually interrupted by the grain boundary.

Key words:  laser forming repairing      2Cr13 stainless steel      heat-affected zone      microstructure characteristic      temperature field simulation     
Received:  28 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00708     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/605

[1] Shao T M, Hua M, Tam H Y.  Wear, 2003; 255: 444


[2] Xue L, Chen J, Lin X, Wang W, Lv X W, Huang W D.  Rare Met Mater Eng, 2007; 36: 989

(薛蕾, 陈静, 林鑫, 王维, 吕晓卫, 黄卫东. 稀有金属材料与工程, 2007; 36: 989)

[3] Yaso M, Morito S, Ohba T, Kobota K.  Mater Sci Eng, 2008; A481: 770

[4] Lin X, Yue T M, Yang H O, Huang W D.  Acta Mater, 2006; 54: 1901

[5] Gaumann M, Henry S, Cleton F, Wegniere J D, Kurz W.  Mater Sci Eng, 1999; A271: 232

[6] Liu F C, Lin X, Huang C P, Song M H, Yang G L, Chen J, Huang W D.  J Alloys Compd, 2011; 205: 4505

[7] Lin X, Yang H O, Chen J, Huang W D.  Acta Metall Sin, 2006; 42: 361

(林鑫, 杨海欧, 陈静, 黄卫东. 金属学报, 2006; 42: 361)

[8] Xu X J, Lin X, Yang M C, Chen J, Huang W D.  J Alloys Compd, 2009; 480: 782

[9] Wu X, Sharman R, Mei J, Voice W.  Mater Des, 2004; 25: 103

[10] Lin X, Yue T M.  Mater Sci Eng, 2005; A402: 294

[11] Liu Y H, Chen J, Zhang Q, Xue L, Lin X, Huang W D.  Chin Opt Lett, 2011; 9: 1671

[12] Tan H, Chen J, Zhang F Y, Lin X, Huang W D.  Rare Met Mater Eng, 2009; 38: 574

[13] Lin X, Cao Y Q, Wu X Y, Yang H O, Chen J, Huang W D.  Mater Sci Eng, 2012; A553: 80

[14] Mahmoudia

 B, Torkamany M J, Sabour Rouh Aghdam A R, Sabbaghzade J.  Mater Des, 2010; 31: 2553

[15] Chen J Y, Xue L, Wang S H. In: Asfahani R, Milbourn D, eds, Materials Science & Technology 2008 Conference & Exhibition, Pittsburgh: Materials Science and Technology, 2008: 1388

[16] Yang D H, Zhang X S, Xue Q J.  Tribology, 1994; 14: 41

(杨德华, 张绪寿, 薛群基. 摩擦学学报, 1994; 14: 41)

[17] Shao T M, Lin X C, Yuan W D.  Acta Metall Sin, 2001; 37: 1040

(邵天敏, 蔺秀川, 袁伟东. 金属学报, 2001; 37: 1040)

[18] Li Y M, Liu Z X, Yang H O, Lin X, Huang W D, Li J G.  Acta Metall Sin, 2003; 39: 521

(李延民, 刘振侠, 杨海欧, 林鑫, 黄卫东, 李建国. 金属学报, 2003; 39: 521)   

[19] Wang L, Felicelli S.  J Manuf Sci Eng, 2007; 129: 1028

[20] Jendrzejewski R, Kreja I, Sliwinski G.  Mater Sci Eng, 2004; A379: 313

[21] Jia W P, Tang H P, He W W, Lin X, Huang W D.  Acta Metall Sin, 2010; 46: 135

(贾文鹏, 汤慧萍, 贺卫卫, 林鑫, 黄卫东. 金属学报, 2010; 46: 135)

[22] Ye R Q, Smugeresky J E, Zheng B L, Zhou Y Z, Lavernia E J.  Mater Sci Eng, 2006; A428: 47

[23] Bassani R, Levita G, Meozzi M, Palla G.  Wear, 2001; 247: 125

[24] Lippold J C, Kotecki D J, translated by Chen J H.  Welding Metallurgy and Weldability of Stainless Steel.

Beijing: China Maching Press, 2008: 61

(Lippold J C, Kotecki D J著, 陈剑虹译. 不锈钢焊接冶金学及焊接性. 北京: 机械工业出版社, 2008: 61)

[25] Yong Q L.  Second Phases in Structural Steels. Beijing: Metallurgical Industry Press, 2006: 81

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 81)

[26] Miokovic T, Schulze V, Vohringer O, Lohe D.  Acta Metall, 2007; 55: 589
[1] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[2] XIANG Xuemei, JIANG He, DONG Jianxin, YAO Zhihao. As-Cast Microstructure Characteristic and Homogenization of a Newly Developed Hard-Deformed Ni-Based Superalloy GH4975[J]. 金属学报, 2020, 56(7): 988-996.
[3] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[4] Hongchi MA, Cuiwei DU, Zhiyong LIU, Yong LI, Xiaogang LI. Comparative Study of Stress Corrosion Cracking Behaviors of Typical Microstructures of Weld Heat-Affected Zones of E690 High-Strength Low-Alloy Steel in SO2-Containing Marine Environment[J]. 金属学报, 2019, 55(4): 469-479.
[5] Fenggang LIU,Xin LIN,Kan SONG,Menghua SONG,Yifan HAN,Weidong HUANG. Microstructure and Mechanical Properties of LaserForming Repaired 300M Steel[J]. 金属学报, 2017, 53(3): 325-334.
[6] Binshi XU,Jinxiang FANG,Shiyun DONG,Xiaoting LIU,Shixing YAN,Chaoqun SONG,Dan XIA. HEAT-AFFECTED ZONE MICROSTRUCTURE EVOLU- TION AND ITS EFFECTS ON MECHANICAL PROPERTIES FOR LASER CLADDING FV520B STAINLESS STEEL[J]. 金属学报, 2016, 52(1): 1-9.
[7] YANG Hui, XIA Shuang, ZHANG Zilong, ZHAO Qing, LIU Tingguang, ZHOU Bangxin, BAI Qin. IMPROVING THE INTERGRANULAR CORROSION RESISTANCE OF THE WELD HEAT-AFFECTED ZONE BY GRAIN BOUNDARY ENGINEERING IN 304 AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(3): 333-340.
[8] ZHOU Xuefeng, CHEN Guang, YAN Shitan, ZHENG Gong, LI Pei, CHEN Feng. EXPLORATION AND RESEARCH OF A NEW Re-FREE Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2013, 49(11): 1467-1472.
[9] HAO Xianchao GAO Ming ZHANG Long ZHAO Xiujuan LIU Kui. MICROSTRUCTURE OF ANNEALED 12Cr13 STAINLESS STEEL AND ITS EFFECT ON THE IMPACT TOUGHNESS[J]. 金属学报, 2011, 47(7): 912-916.
[10] XU Ze-Jian. MICROHARDNESS INVESTIGATION OF 0Cr18Ni10Ti STAINLESS STEEL WELDED JOINT[J]. 金属学报, 2008, 44(5): 636-640 .
[11] ZHAO Lin; ZHANG Xudong; CHEN Wuzhu. Toughness Of Heat--Affected Zone Of 800 MPa Grade Low Alloy Steel[J]. 金属学报, 2005, 41(4): 392-396 .
[12] GUO Xuming; YANG Chenggang; QIAN Bainian; XU Qiang; ZHANG Hongyan. Effects Of Inoculants Ti And Zr On The Microstructures And Properties Of 2219 Al--Cu Alloy Welds[J]. 金属学报, 2005, 41(4): 397-400 .
[13] LI Yajiang;ZOU Zengda;CHEN Zhunian;WEI Hing(Shandong Polytechnic University; Jinan 250014); JIANG Quanchang(Engineering Machinery Co. Ltd. Xiamen361004)(Manuscript received 1995-10-04). EFFECTS OF THE WELD THERMAL CYCLE ON MICROSTRUCTURE AND PROPERTIES OF THE HEAT-AFFECTED ZONE OF HQ130 STEEL[J]. 金属学报, 1996, 32(5): 532-537.
No Suggested Reading articles found!