Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (5): 569-575    DOI: 10.3724/SP.J.1037.2012.00666
Current Issue | Archive | Adv Search |
STUDY ON Cu PRECIPITATE OF THE LOW C HIGH STRENGTH STEEL CONTAINING Cu AND Ni DURING ISOCHRONAL TEMPERING
YU Ximo1, 2), ZHAO Shijin1, 2)
1) Institute of Materials Science, Shanghai University, Shanghai 200072
2) Key Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

YU Ximo, ZHAO Shijin. STUDY ON Cu PRECIPITATE OF THE LOW C HIGH STRENGTH STEEL CONTAINING Cu AND Ni DURING ISOCHRONAL TEMPERING. Acta Metall Sin, 2013, 49(5): 569-575.

Download:  PDF(2789KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu precipitation strengthening plays an important role in the fabrication of high-strength low-alloy (HSLA) steels. The nature of Cu precipitation and the actual distributional morphology of Cu precipitates have a significant effect or directly determine the strength and toughness of HSLA steels. HSLA steel is weldable without preheat by reducing C to a low concentration. To compensate for the decrease of strength caused by reducing C, Cu was added to HSLA steel for precipitation strengthening by nanoscale Cu precipitates. The size, number density and composition of Cu nanophases could be well characterized by the atom probe tomography (APT), and the Cu nanophases obtained by APT analysis are usually termed Cu clusters. In the study, the specimens were austenitized for 30 min at 900 ℃followed by water quenching, and tempered isochronally for 60 min at different temperatures. The hardness was conducted, the microstructure and Cu precipitate were analyzed by HRTEM and APT. During tempering, Cu precipitation happened, Cu precipitate Moire fringe formed and the Cu precipitate transformed to fcc structure; the lath boundary gradually bulged out and migrated, a repeat of bulging and migration of local parts of lath boundary resulted in migration of the whole boundary, and lath martensite transformed to equiaxed ferrite finally. At 500℃, the strengthening peaked by Cu precipitates. During 400-500℃, the number of Cu clusters changed greatly when the Cu isoconcentration set at different values, this indicated that the Cu precipitates  were on the stage of nucleation; while the number of Cu clusters changed little during 500-650 ℃, this indicated that the Cu precipitates were on the stage of coarsening. The Cu, C, Mo and P segregated at the grain boundary. The boundary could provide Cu solutes and nucleation sites for Cu precipitation, leading to the segregation of Cu clusters at the grain boundary. The Ni, Mn and Al segregated at the heterophase interface between Cu precipitate and ferrite matrix forming a core-shell structure.

Key words:  Cu precipitate      3DAP      hardness      segregation      HRTEM     
Received:  07 November 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00666     OR     https://www.ams.org.cn/EN/Y2013/V49/I5/569

[1] Dhua S K, Mukerjee D, Sarma D S.  Metall Mater Trans, 2001; 32A: 2259


[2] Vaynman S, Isheim D, Kolli R P, Bhat S P, Seidman D N, Fine M E.  Metall Mater Trans, 2008; 39A: 363

[3] Isheim D, Kolli R P, Fine M E, Seidman D N.  Scr Mater, 2006; 55: 35

[4] Panwar S, Goel D B, Pandey O P, Prasad K S.  Bull Mater Sci, 2006; 29: 281

[5] Panwar S, Goel D B, Pandey O P, Prasad K S.  Bull Mater Sci, 2003; 26: 441

[6] Ghosh A, Das S, Chatterjee S.  Mater Sci Eng, 2008; A486: 152

[7] Zhang Z W, Liu C T, Wen Y R, Hirata A, Guo S, Chen G, Chen M W, Chin B A.  Metall Mater Trans, 2012; 43A: 351

[8] Yong Q L.  Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 127

(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 127)

[9] Thompson S W, Krauss G.  Metall Mater Trans, 1996; 27A: 1573

[10] Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A.  Acta Metall Sin, 2012; 48 407

(徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安. 金属学报, 2012; 48: 407)

[11] Xu G, Cai L L, Feng L, Zhou B X, Liu W Q, Wang J A.  Acta Metall Sin, 2012; 48: 789

(徐刚, 蔡琳玲, 冯柳, 周邦新, 刘文庆, 王均安. 金属学报, 2012; 48: 789)

[12] Li H, Xia S, Zhou B X, Liu W Q.  Mater Charact, 2012; 66: 68

[13] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X.  Acta Metall Sin, 2011; 47: 269

(楚大峰, 徐刚, 王伟, 彭建超, 王均安, 周邦新. 金属学报, 2011; 47: 269)

[14] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C.  Acta Metall Sin, 2011; 47: 905

(徐刚, 楚大峰, 蔡琳玲, 周邦新, 王伟, 彭建超. 金属学报, 2011; 47: 905)

[15] Othen P J, Jenkins M L, Smith G D W.  Philos Mag, 1994; 70A: 1

[16] Monzen R, Jenkins M L, Sutton A P.  Philos Mag, 2000; 80A: 711

[17] Monzen R, Iguchi M, Jenkins M L.  Philos Mag Lett, 2000; 80: 137

[18] Hardouin D H A, Doole R C, Jenkins M L, Barbu A.  Phil Mag Lett, 1995; 71: 325

[19] Kolli R P, Seidman D N.  Acta Mater, 2008; 56: 2073

[20] Zhang C, Enomoto M.  Acta Mater, 2006; 54: 4183

[21] Worrall G M, Buswell J T, English C A, Hetherington M G, Smith G D W.  J Nucl Mater, 1987; 148: 107

[22] Liu Q D, Zhao S J.  Metall Mater Trans, 2013; 44A: 163

[23] Liu Q D, Liu W Q.  J Mater Res, 2012; 27: 1060

[24] Liu Q D, Zhao S J.  MRS Commun, 2012; 2: 127

[25] Sawada K, Taneike M, Kimura K, Abe F.  Mater Sci Technol, 2003; 19: 739

[26] Ghasemi Banadkouki S S, Yu D, Dunne D P.  ISIJ Int, 1996; 36: 61

[27] Miglin M T, Hirth J P, Rosenfield A P, Clark W A T.  Metall Trans, 1986; 17A: 791

[28] Zhou B X, Wang J A, Liu Q D, Liu W Q, Wang W, Lin M D, Xu G, Chu D F.  Mater China, 2011; 30: 1

(周邦新, 王均安, 刘庆冬, 刘文庆, 王伟, 林民东, 徐刚, 楚大峰. 中国材料进展, 2011; 30: 1)

[29] Kolli R P, Mao Z, Seidman D N.  Appl Phys Lett, 2007; 91: 241903

[30] Isheim D, Gagliano M S, Fine M E, Seidman D N.  Acta Mater, 2006; 54: 841

[31] Xu Z, Zhao L C.  Solid--state Phase Transformation of Metals. Beijing: Science Press, 2004: 126

(徐洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 126)

[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[3] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[4] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[5] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[6] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[7] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[8] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[9] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[10] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[11] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[12] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[13] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[14] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[15] GUO Zhongao, PENG Zhiqiang, LIU Qian, HOU Zibing. Nonuniformity of Carbon Element Distribution of Large Area in High Carbon Steel Continuous Casting Billet[J]. 金属学报, 2021, 57(12): 1595-1606.
No Suggested Reading articles found!