Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 17-25    DOI: 10.3724/SP.J.1037.2012.00479
Current Issue | Archive | Adv Search |
IN SITU MULTI-FIELDS INVESTIGATION ON INSTABILITY AND TRANSFORMATION LOCALIZATION OF MARTENSITIC PHASE TRANSFORMATION IN NiTi ALLOYS
DU Hongfei 1, ZENG Pan1, 2, ZHAO Jiaqing3,LEI Liping1, 2, FANG Gang1, 2, QU Timing1, 2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Material Processing Technology, Ministry of Education, Tsinghua University, Beijing,100084
3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
Download:  PDF(1570KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When NiTi shape memory alloys thin strips under the uniaxial tensile deformation, the stress-induced martensitic transformation tends to exhibit strain localization and instability, and the sample shows reversible transformation bands evolution on macroscopic. The displacement, strain and temperature fields were investigated with in situ optical method, and the full-field strain and temperature information about martensitic localization were quantitatively obtained during uniaxial loading—unloading conditions. Strain field is calculated by digital image correlation (DIC) method, and the temperature field is captured by infrared thermograph, the thickness field and in-plane rotation angle are also calculated by DIC data.The strain, temperature variation, thickness, in-plane rotation both inside and outside of the transformation bands were studied when it nucleation, expansion, combination, reduction and disappear. The results show that transformation strain of the samples are mainly concentrated inside the transformation bands but small outside, and temperature variation mainly concentrated in the transformation fronts, the thickness field in transformation bands is 2% smaller than out of bands. In-plane rotation angle is not only concentrated in the transformation fronts, but also heterogeneous in the transformation bands. In addition, the maximum in-plane rotation angle during tension is 1.5 °. The whole loading-unloading progress is full thermal coupling, transformation localization, martensite and austenitic critical nucleation stress are greatly influenced by temperature variation.

Key words:  shape memory alloy      martensitic transformation      material instability      digital image correlation     

Cite this article: 

DU Hongfei,ZENG Pan, ZHAO Jiaqing,LEI Liping, FANG Gang, QU Timing. IN SITU MULTI-FIELDS INVESTIGATION ON INSTABILITY AND TRANSFORMATION LOCALIZATION OF MARTENSITIC PHASE TRANSFORMATION IN NiTi ALLOYS. Acta Metall Sin, 2013, 49(1): 17-25.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00479     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/17

 


[1] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and

Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 5

(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京: 国防工业出版社, 2002: 5)

[2] Otsuka K, Wayman C M, translated by Zhang C C, Su

J C. Shape Memory Materials. Shanghai: Second Military Medical University Press, 2003: 30

(Otsuka K, Wayman C M著, 张春才, 苏佳灿译. 形状记忆材料. 上海: 第二军医大学出版社, 2003: 30)

[3] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 20

[4] Shaw J A, Kyriakides S. Acta Mater, 1997; 45: 683

[5] Li Z Q, Sun Q P. Int J Plast, 2002; 18: 1481

[6] Sittner P, Liu Y, Novak V. J Mech Phys Solids, 2005; 53: 1719

[7] Brinson L C, Schmidt I, Lammering R. J Mech Phys Solids, 2004; 52: 1549

[8] Daly S, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 3593

[9] Daly S, Miller A, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 6322

[10] Favier D, Louche H, Schlosser P, Orgeas L, Vacher P, Debove L. Acta Mater, 2007; 55: 5310

[11] Zhang X H, Feng P, He Y J, Yu T X, Sun Q P. Int J Mech Sci, 2010; 52: 1660

[12] Kim K, Daly S. Exp Mech, 2011; 51: 641

[13] Sutton M A, Orteu J J, Schreier H W. Image Correlation For Shape Motion And Deformation Measurements.New York: Springer, 2009: 36

[14] Zhao J Q, Zeng P, Lei L P, Ma Y. Opt Laser Eng, 2012; 50: 473

[15] Zhao J Q, Zeng P, Lei L P, Du H F, He W B, Liu Y, Xu Y J. Opt Laser Eng, 2012; 50: 1662

[16] Zhao J Q. PhD Thesis, Tsinghua University, 2012

(赵加清. 清华大学博士论文, 北京, 2012)

[17] Reedlunn B, Daly S, Hector L, Zavattieri P, Shaw J. Exp Tech, 2011; 35: 1

[18] Chu T C, Ranson W F, Sutton M A. Exp Mech, 1985; 25: 232

[19] Sutton M A, McNeill S R, Helm J D. Photo-Mechanics, 2000; 77: 323

[20] Churchill C B, Shaw J A, Iadicola M A. Exp Tech, 2010; 34: 63

[21] Shaw J A, Kyriakides S. Int J Plast, 1998; 13: 837

[22] Churchill C B, Shaw J A, Iadicola M A. Exp Tech, 2009; 33: 51

[23] Feng P, Sun Q P. J Mech Phys Solids, 2006; 54: 1568

[24] Feng P, Sun Q P. Smart Mater Struct, 2007; 16: S179

[25] Zhang Y T, Qi D X. The Theory on Strain Localization and its Applications.

Tianjin: Tianjin University Press, 2010: 43

(张义同, 齐德. 应变局部化理论及应用. 天津: 天津大学出版社, 2010: 43)

[1] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[2] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[3] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[4] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[5] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
[6] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[7] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[8] Xue WANG,Lei HU,Dongxu CHEN,Songtao SUN,Liquan LI. Effect of Martensitic Transformation on Stress Evolution in Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2017, 53(7): 888-896.
[9] Kejian LI,Zhipeng CAI,Yao WU,Jiluan PAN. Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process[J]. 金属学报, 2017, 53(7): 778-788.
[10] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[11] Jing BAI,Ze LI,Zhen WAN,Xiang ZHAO. A First-Principles Study on Crystal Structure, Phase Stability and Magnetic Properties of Ni-Mn-Ga-Cu Ferromagnetic Shape Memory Alloys[J]. 金属学报, 2017, 53(1): 83-89.
[12] Lina WANG,Ping YANG,Weimin MAO. ANALYSIS OF MARTENSITIC TRANSFORMATIONDURING TENSION OF HIGH MANGANESETRIP STEEL AT HIGH STRAIN RATES[J]. 金属学报, 2016, 52(9): 1045-1052.
[13] Pengcheng SONG,Wenbo LIU,Lei CHEN,Chi ZHANG,Zhigang YANG. PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45[J]. 金属学报, 2016, 52(8): 1000-1008.
[14] Jie DENG,Jiawei MA,Yiyang XU,Yao SHEN. EFFECT OF MARTENSITE DISTRIBUTION ON MICROSCOPIC DEFORMATION BEHAVIOR AND MECHANICAL PROPERTIES OF DUAL PHASE STEELS[J]. 金属学报, 2015, 51(9): 1092-1100.
[15] Zhe LI,Chen XU,Kun XU,Hao WANG,Yuanlei ZHANG,Chao JING. STUDY OF MARTENSITIC TRANSFORMATION AND STRAIN BEHAVIOR IN Ni50-xCoxMn39Sn11 (x=0, 2, 4, 6) HEUSLER ALLOYS[J]. 金属学报, 2015, 51(8): 1010-1016.
No Suggested Reading articles found!