Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 17-25    DOI: 10.3724/SP.J.1037.2012.00479
Current Issue | Archive | Adv Search |
IN SITU MULTI-FIELDS INVESTIGATION ON INSTABILITY AND TRANSFORMATION LOCALIZATION OF MARTENSITIC PHASE TRANSFORMATION IN NiTi ALLOYS
DU Hongfei 1, ZENG Pan1, 2, ZHAO Jiaqing3,LEI Liping1, 2, FANG Gang1, 2, QU Timing1, 2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084
2. Key Laboratory for Advanced Material Processing Technology, Ministry of Education, Tsinghua University, Beijing,100084
3. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
Cite this article: 

DU Hongfei,ZENG Pan, ZHAO Jiaqing,LEI Liping, FANG Gang, QU Timing. IN SITU MULTI-FIELDS INVESTIGATION ON INSTABILITY AND TRANSFORMATION LOCALIZATION OF MARTENSITIC PHASE TRANSFORMATION IN NiTi ALLOYS. Acta Metall Sin, 2013, 49(1): 17-25.

Download:  PDF(1570KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

When NiTi shape memory alloys thin strips under the uniaxial tensile deformation, the stress-induced martensitic transformation tends to exhibit strain localization and instability, and the sample shows reversible transformation bands evolution on macroscopic. The displacement, strain and temperature fields were investigated with in situ optical method, and the full-field strain and temperature information about martensitic localization were quantitatively obtained during uniaxial loading—unloading conditions. Strain field is calculated by digital image correlation (DIC) method, and the temperature field is captured by infrared thermograph, the thickness field and in-plane rotation angle are also calculated by DIC data.The strain, temperature variation, thickness, in-plane rotation both inside and outside of the transformation bands were studied when it nucleation, expansion, combination, reduction and disappear. The results show that transformation strain of the samples are mainly concentrated inside the transformation bands but small outside, and temperature variation mainly concentrated in the transformation fronts, the thickness field in transformation bands is 2% smaller than out of bands. In-plane rotation angle is not only concentrated in the transformation fronts, but also heterogeneous in the transformation bands. In addition, the maximum in-plane rotation angle during tension is 1.5 °. The whole loading-unloading progress is full thermal coupling, transformation localization, martensite and austenitic critical nucleation stress are greatly influenced by temperature variation.

Key words:  shape memory alloy      martensitic transformation      material instability      digital image correlation     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00479     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/17

 


[1] Zhao L C, Cai W, Zheng Y F. Shape Memory Effect and

Superelasticity in Alloys. Beijing: National Defense Industry Press, 2002: 5

(赵连城, 蔡伟, 郑玉峰. 合金的形状记忆效应与超弹性. 北京: 国防工业出版社, 2002: 5)

[2] Otsuka K, Wayman C M, translated by Zhang C C, Su

J C. Shape Memory Materials. Shanghai: Second Military Medical University Press, 2003: 30

(Otsuka K, Wayman C M著, 张春才, 苏佳灿译. 形状记忆材料. 上海: 第二军医大学出版社, 2003: 30)

[3] Otsuka K, Wayman C M. Shape Memory Materials. Cambridge: Cambridge University Press, 1998: 20

[4] Shaw J A, Kyriakides S. Acta Mater, 1997; 45: 683

[5] Li Z Q, Sun Q P. Int J Plast, 2002; 18: 1481

[6] Sittner P, Liu Y, Novak V. J Mech Phys Solids, 2005; 53: 1719

[7] Brinson L C, Schmidt I, Lammering R. J Mech Phys Solids, 2004; 52: 1549

[8] Daly S, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 3593

[9] Daly S, Miller A, Ravichandran G, Bhattacharya K. Acta Mater, 2007; 55: 6322

[10] Favier D, Louche H, Schlosser P, Orgeas L, Vacher P, Debove L. Acta Mater, 2007; 55: 5310

[11] Zhang X H, Feng P, He Y J, Yu T X, Sun Q P. Int J Mech Sci, 2010; 52: 1660

[12] Kim K, Daly S. Exp Mech, 2011; 51: 641

[13] Sutton M A, Orteu J J, Schreier H W. Image Correlation For Shape Motion And Deformation Measurements.New York: Springer, 2009: 36

[14] Zhao J Q, Zeng P, Lei L P, Ma Y. Opt Laser Eng, 2012; 50: 473

[15] Zhao J Q, Zeng P, Lei L P, Du H F, He W B, Liu Y, Xu Y J. Opt Laser Eng, 2012; 50: 1662

[16] Zhao J Q. PhD Thesis, Tsinghua University, 2012

(赵加清. 清华大学博士论文, 北京, 2012)

[17] Reedlunn B, Daly S, Hector L, Zavattieri P, Shaw J. Exp Tech, 2011; 35: 1

[18] Chu T C, Ranson W F, Sutton M A. Exp Mech, 1985; 25: 232

[19] Sutton M A, McNeill S R, Helm J D. Photo-Mechanics, 2000; 77: 323

[20] Churchill C B, Shaw J A, Iadicola M A. Exp Tech, 2010; 34: 63

[21] Shaw J A, Kyriakides S. Int J Plast, 1998; 13: 837

[22] Churchill C B, Shaw J A, Iadicola M A. Exp Tech, 2009; 33: 51

[23] Feng P, Sun Q P. J Mech Phys Solids, 2006; 54: 1568

[24] Feng P, Sun Q P. Smart Mater Struct, 2007; 16: S179

[25] Zhang Y T, Qi D X. The Theory on Strain Localization and its Applications.

Tianjin: Tianjin University Press, 2010: 43

(张义同, 齐德. 应变局部化理论及应用. 天津: 天津大学出版社, 2010: 43)

[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[3] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[4] ZHANG Xin, CUI Bo, SUN Bin, ZHAO Xu, ZHANG Xin, LIU Qingsuo, DONG Zhizhong. Effect of Y Element on the Properties of Cu-Al-Ni High Temperature Shape Memory Alloy[J]. 金属学报, 2022, 58(8): 1065-1071.
[5] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[6] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[7] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[8] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[9] YE Junjie, HE Zhirong, ZHANG Kungang, DU Yuqing. Effect of Ageing on Microsturcture, Tensile Properties, and Shape Memory Behaviors of Ti-50.8Ni-0.1Zr Shape Memory Alloy[J]. 金属学报, 2021, 57(6): 717-724.
[10] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[11] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[12] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[13] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[14] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[15] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
No Suggested Reading articles found!