|
|
CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE |
WEI Renchao1,2, XU Fengling2, LIN Cunguo2, TANG Xiao3, LI Yan3( ) |
1 College of Chemical Engineering, China University of Petroleum, Qingdao 266580 2 State key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute, Qingdao 266071 3 College of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao 266580 |
|
Cite this article:
WEI Renchao, XU Fengling, LIN Cunguo, TANG Xiao, LI Yan. CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE. Acta Metall Sin, 2014, 50(12): 1461-1470.
|
Abstract With increasing attention paid to the security issues of onshore engineering structure, corrosion researches of copper alloy were focused on the influence of single bacteria, especially the anaerobic sulfate-reducing bacteria (SRB). However, a part of documents indicated that comprehensive influence of natural bacteria on the copper alloy does exist, and whether the influence of single bacteria could represent the real impact of natural complex bacteria is remaining unclear. Under this consideration, electrochemical measurements, incorporated with surface morphology and composition analysis, were employed to investigate the corrosion behavior of B10 alloy in seawater which was inoculated into Vibrio azureus, SRB and their mixed strains, respectively, in this work. The results showed that these marine micro-organisms could affect the corrosion process of B10 alloy in relatively different ways. Compared with the sterile condition, Vibrio azureus could inhabit the corrosion of B10 alloy to some extent by blocking cathodic oxygen reducing process, while SRB could significantly promote its corrosion by accelerating anodic dissolution of B10 alloy via hydrogen depolarization and forming loose and bulky corrosion products without complete protection. In the mixed microbial medium, SRB multiply rapidly in the local anaerobic environment created by the biological membrane of Vibrio azureus, their interacting changed the corrosive micro-environment on the surface of B10 alloy. The smaller and complicated corrosion products formed in the seawater containing mixed strains obviously performed better than that produced in the medium containing SRB only, giving rise to a significant increase in anodic polarization; at the same time, similar cathodic process was still occurred in the mixed culture. As a result, the corrosion current density of B10 alloy fell in between those detected in two single microbial media. For the practice engineering applications, therefore, the conclusions drawn from single microbe medium should be cautiously and carefully adopted as the criterion to evaluate corrosion behavior of B10 alloy in actual microbial environment.
|
|
|
Fund: Supported by State Key Program of National Natural Science of China (No.51131008) and Fundamental Research Funds for the Central Universities (No.CX-1221) |
[1] |
Rao T S, Nair K V K. Corros Sci, 1998; 40: 1821
|
[2] |
Rao T S, Sairam T N, Viswamathan B, Nair K V K. Corros Sci, 2000; 42: 1417
|
[3] |
Little B, Wagner P, Ray R, Pope R, Scheetz R. J Ind Microbiol Blot, 1991; 8: 213
|
[4] |
Licina G L. Mater Perform, 1989; 28: 55
|
[5] |
Al-Meshari A, Diab M, Al-Enazi S. Hydrocarbon Process, 2011; 90: 55
|
[6] |
Zhang J, Liu F L, Li W H, Duan J Z, Hou B R. Acta Metall Sin, 2010; 46: 1250
|
|
(张 杰, 刘奉令, 李伟华, 段继周, 侯保荣. 金属学报, 2010; 46: 1250)
|
[7] |
Lytle D A, Nadagouda M N. Corros Sci, 2010; 52: 1927
|
[8] |
Sun F L, Lu L, Li X G, Wan H X, Du C W, Liu Z Y. Acta Metall Sin, 2013; 49: 1
|
|
(孙飞龙, 卢 琳, 李晓刚, 万红霞, 杜翠薇, 刘智勇. 金属学报, 2013; 49: 1)
|
[9] |
Liu G Z, Qian J H, Ma Y, Wu J H. Electrochemistry, 2002; 8: 191
|
|
(刘光洲, 钱建华, 马 焱, 吴建华. 电化学, 2002; 8: 191)
|
[10] |
Mcneil M B. Corrosion, 1991; 47: 74
|
[11] |
Little B J, Ray R I, Wagner P A, Jones-Meehan J, Lee C C, Mansfeld F. Biofouling, 1999; 13: 301
|
[12] |
Li J, Li J, Jiao D. Corros Sci Prot Technol, 2011; 3: 18
|
|
(李 娟, 李 进, 焦 迪. 腐蚀科学与防护技术, 2011; 3: 18)
|
[13] |
Starosvetsky D, Khaselev O, Starosvetsky J, Armon R, Yahalom J. Corros Sci, 2000; 42: 345
|
[14] |
Huang G S, Liu G Z, Duan D X, Wang J. Corros Prot, 2004; 25: 242
|
|
(黄国胜, 刘光洲, 段东霞, 王 军. 腐蚀与防护, 2004; 25: 242)
|
[15] |
Li J, Xu Z Y, Du Y L, Mou W T, Sun W G. J Chin Soc Corros Prot, 2007; 27: 342
|
|
(李 进, 许兆义, 杜一立, 牟伟腾, 孙文刚. 中国腐蚀与防护学报, 2007; 27: 342)
|
[16] |
Javaherdashti R. Appl Microbiol Biotechnol, 2011; 91: 1507
|
[17] |
Dong Z H, Shi W, Ruan H M, Zhang G A. Corros Sci, 2011; 53: 2978
|
[18] |
Chen J, Lei Y H, Gao G H, Kong M L, Yin Y S. J Chin Soc Corros Prot, 2011; 31: 231
|
|
(陈 娟, 类延华, 高冠慧, 孔茉莉, 尹衍升. 中国腐蚀与防护学报, 2011; 31: 231)
|
[19] |
Nercessian D, Duville F B, Desimone M, Simison S, Busalmen J P. Water Res, 2010; 44: 2592
|
[20] |
Jayaraman A, Ornek D, Duarte D A, Lee C, Mansfeld F B, Wood T K. Appl Microbiol Biotechnol, 1999; 52: 787
|
[21] |
Reyes A, Letelier M V, Iglesia R D, Gonza′lez B, Lagos G. Int Biodeterior Biodegrad, 2008; 61: 135
|
[22] |
Valcarce M B, Sa′nchez S R, Va′zquez M. Corros Sci, 2005; 47: 795
|
[23] |
Yuan S J, Choong A F M, Pehkonen S O. Corros Sci, 2007; 49: 4352
|
[24] |
Wu J Y, Xiao W L, Chai K, Yang Y H. Acta Metall Sin, 2010; 46: 118
|
|
(吴进怡, 肖伟龙, 柴 柯, 杨雨辉. 金属学报, 2010; 46: 118)
|
[25] |
Wu J Y, Chai K, Xiao W L, Yang Y H, Han E H. Acta Metall Sin, 2010; 46: 755
|
|
(吴进怡, 柴 柯, 肖伟龙, 杨雨辉, 韩恩厚. 金属学报, 2010; 46: 755)
|
[26] |
Yu L. PhD Dissertation, Institute of Oceanology, Chinese Academy of Sciences, 2011
|
|
(于 林. 中国科学院海洋研究所博士学位论文, 2011)
|
[27] |
Xu C M. PhD Dissertation, Xi′an Jiaotong University, 2007
|
|
(胥聪敏. 西安交通大学博士学位论文, 2007)
|
[28] |
Xu C M, Zhang Y H, Cheng G X, Zhu W S H. Mater Sci Eng, 2007; A443: 235
|
[29] |
Liu H Q, Wan Y, Zhang D, Hou B R. J Corros Prot, 2011; 32: 81
|
|
(刘怀群, 万 逸, 张 盾, 侯保荣. 腐蚀与防护, 2011; 32: 81)
|
[30] |
Zhu G J, Xiong K, Li W, Du X H, Gu C X. Ship Eng, 2012; 34(1): 92
|
|
(朱冠军, 熊 凯, 李 伟, 杜兴华, 顾彩香. 船舶工程, 2012; 34(1): 92)
|
[31] |
Pope R, Little B, Ray R. Biofouling, 2000; 16: 83
|
[32] |
Li J. PhD Dissertation, Beijing Jiaotong University, 2007
|
|
(李 进. 北京交通大学博士学位论文, 2007)
|
[33] |
Cao C N. Corrosion Electrochemical Principle. 2nd Ed, Beijing: Chemical Industry Press, 2004: 251
|
|
(曹楚南. 腐蚀电化学原理(第二版). 北京: 化学工业出版社, 2004: 251)
|
[34] |
Li Y, Wei X J, Feng F L. Chin J Nonferrous Met, 2001; 11: 248
|
|
(李 焰, 魏绪钧, 冯法伦. 中国有色金属学报, 2001; 11: 248)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|