Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1461-1470    DOI: 10.11900/0412.1961.2014.00204
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE
WEI Renchao1,2, XU Fengling2, LIN Cunguo2, TANG Xiao3, LI Yan3()
1 College of Chemical Engineering, China University of Petroleum, Qingdao 266580
2 State key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute, Qingdao 266071
3 College of Mechanical and Electrical Engineering, China University of Petroleum, Qingdao 266580
Cite this article: 

WEI Renchao, XU Fengling, LIN Cunguo, TANG Xiao, LI Yan. CORROSION BEHAVIOR OF B10 ALLOY EXPOSED TO SEAWATER CONTAINING VIBRIO AZUREUS, SULFATE-REDUCING BACTERIA, AND THEIR MIXTURE. Acta Metall Sin, 2014, 50(12): 1461-1470.

Download:  HTML  PDF(4890KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With increasing attention paid to the security issues of onshore engineering structure, corrosion researches of copper alloy were focused on the influence of single bacteria, especially the anaerobic sulfate-reducing bacteria (SRB). However, a part of documents indicated that comprehensive influence of natural bacteria on the copper alloy does exist, and whether the influence of single bacteria could represent the real impact of natural complex bacteria is remaining unclear. Under this consideration, electrochemical measurements, incorporated with surface morphology and composition analysis, were employed to investigate the corrosion behavior of B10 alloy in seawater which was inoculated into Vibrio azureus, SRB and their mixed strains, respectively, in this work. The results showed that these marine micro-organisms could affect the corrosion process of B10 alloy in relatively different ways. Compared with the sterile condition, Vibrio azureus could inhabit the corrosion of B10 alloy to some extent by blocking cathodic oxygen reducing process, while SRB could significantly promote its corrosion by accelerating anodic dissolution of B10 alloy via hydrogen depolarization and forming loose and bulky corrosion products without complete protection. In the mixed microbial medium, SRB multiply rapidly in the local anaerobic environment created by the biological membrane of Vibrio azureus, their interacting changed the corrosive micro-environment on the surface of B10 alloy. The smaller and complicated corrosion products formed in the seawater containing mixed strains obviously performed better than that produced in the medium containing SRB only, giving rise to a significant increase in anodic polarization; at the same time, similar cathodic process was still occurred in the mixed culture. As a result, the corrosion current density of B10 alloy fell in between those detected in two single microbial media. For the practice engineering applications, therefore, the conclusions drawn from single microbe medium should be cautiously and carefully adopted as the criterion to evaluate corrosion behavior of B10 alloy in actual microbial environment.

Key words:  sulfate-reducing bacteria      Vibrio azureus      electrochemical impedance spectroscopy      B10 alloy     
ZTFLH:  TG178  
Fund: Supported by State Key Program of National Natural Science of China (No.51131008) and Fundamental Research Funds for the Central Universities (No.CX-1221)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00204     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1461

Fig.1  Variations of corrosion potential with time (t) for B10 alloy in four mediums (Blank sterile seawater, and those inoculated against Vibrio azureus, sulfate-reducing bacteria (SRB) and mixed strains, respectively)
Fig.2  Nyquist plots (a) and Bode plots of amplitude-frequency relationship (b) and phase angle-frequency relationship (c) of B10 alloy immersed in sterile seawater (Z—modulus inpedance, f—frequency)
Fig.3  Nyquist plots (a) and Bode plots of amplitude-frequency relationship (b) and phase angle-frequency relationship (c) of B10 alloy immersed in sterile seawater inoculated against Vibrio azureus
Fig.4  Nyquist plots (a) and Bode plots of amplitude-frequency (b) and phase-frequency (c) of B10 alloy immersed in sterile seawater inoculated against SRB
Fig.5  Nyquist plots (a) and Bode plots of amplitude-frequency relationship (b) and phase angle-frequency relationship (c) of B10 alloy immersed in sterile seawater inoculated against SRB after inoculated against Vibrio azureus for 3 d
Medium Time Rs Ym nm Rm Yt nt Rt W, Y0
Ω·cm2 Ω-1·sn·cm-2 Ω·cm2 Ω-1·sn·cm-2 Ω·cm2 Ω-1·s5·cm-2
Sterile 1 h 19.34 296.2 0.7334 4198 3.753×10-3
seawater 1 d 5.757 47.66 0.6027 1.696×104 104.5 0.6953 1.690×104 1.026×10-3
2 d 7.519 58.70 0.5651 1.354×104 28.98 0.7639 1.350×104 8.670×10-4
4 d 19.65 87.49 0.6399 1.211×104 1.334×10-3
7 d 23.36 86.71 0.6271 1.438×104 1.634×10-3
13 d 21.15 79.76 0.6341 1.497×104 28.54 0.7334 1.880×104 7.471×10-3
Vibria 1 h 9.043 414.6 0.7363 1600 5.695×10-3
azureus 1 d 10.11 183.4 0.8036 1837 9.490×10-5
2 d 11.91 74.30 0.8993 2707 3.870×10-5
4 d 10.75 68.97 0.9148 3551 31.59 0.6517 3.87×105 2.860×10-5
7 d 15.49 150.1 0.8001 9626 13850 1.000 3385 4.900×1013
13 d 13.40 166.1 0.8300 8877 17840 1.000 1778 2.640×1010
SRB 1 h 1.281 13.12 3.580×10-8 2.322 924.4 0.8188 80.31 6.960×10-4
1 d 3.112 976.7 0.8268 15.35 556.1 0.5131 1.771×104 5.660×10-5
2 d 3.194 180.7 1.000 1.606 1067 0.753 736.9 4.470×10-4
4 d 3.195 191.3 1.000 2.942 1141 0.7732 968.8 3.970×10-4
7 d 4.480 1858 0.7545 57.42 121.6 1.000 1517 3.480×10-4
13 d 4.019 1815 0.7586 70.39 206.4 0.9991 2235 2.480×10-4
Mixture 1 h 7.583 242.8 0.7946 56.38 202.7 0.7958 1.18×104 9.230×10-4
bacteria 1 d 6.595 185.3 0.8276 46.77 464.5 0.8278 1.66×104 1.254×10-3
2 d 4.713 164.3 0.8493 56.00 579.2 0.8370 2.41×104 1.256×10-3
4 d 5.450 176.3 0.8403 76.55 660.9 0.8603 4.35×104 3.266×10-3
7 d 9.947 217.1 0.8109 85.95 632.5 0.8749 5.94×104 2.330×10-3
13 d 5.322 235.3 0.8104 79.04 663.8 0.8690 8.33×104 2.420×106
Table 1  Parameters of electrochemical impedance of B10 alloy immersed in different mediums
Fig.6  Polarization curves of B10 alloy in four different mediums after 12 d immersion (i—current density)
Medium Ba / mV Bc / mV icorr / (μA·cm-2) Ecorr / V
Sterile seawater 59.17 125.80 0.5473 -0.247
Vibrio azureus 55.43 199.50 0.4720 -0.230
SRB 24.62 95.57 14.1100 -0.878
Mixture bacteria 267.10 84.58 1.1550 -0.833
Table 2  Fitting parameters of polarization curves for B10 alloy immersed in four different mediums
Fig.7  SEM images (left) and corresponding EDS analysis (right) of B10 alloy immersed in different mediums for 12 d

(a) sterile seawater (b) Vibrio azureus (c) SRB (d) mixture bacteria

Medium C O S Fe Ni Cu Bal.
Sterile seawater - 27.72 - 1.21 6.57 60.75 3.75
Vibrio azureus - 10.88 11.44 - 10.08 67.07 0.53
SRB 4.24 5.44 29.56 - - 60.75 0.01
Mixture bacteria 4.45 24.50 23.18 4.86 5.26 35.97 1.78
  
Fig.8  Schematics of corrosion of B10 alloy immersed in three microbial environments

(a) Vibrio azureus

(b) SRB

(c) mixture bacteria

[1] Rao T S, Nair K V K. Corros Sci, 1998; 40: 1821
[2] Rao T S, Sairam T N, Viswamathan B, Nair K V K. Corros Sci, 2000; 42: 1417
[3] Little B, Wagner P, Ray R, Pope R, Scheetz R. J Ind Microbiol Blot, 1991; 8: 213
[4] Licina G L. Mater Perform, 1989; 28: 55
[5] Al-Meshari A, Diab M, Al-Enazi S. Hydrocarbon Process, 2011; 90: 55
[6] Zhang J, Liu F L, Li W H, Duan J Z, Hou B R. Acta Metall Sin, 2010; 46: 1250
(张 杰, 刘奉令, 李伟华, 段继周, 侯保荣. 金属学报, 2010; 46: 1250)
[7] Lytle D A, Nadagouda M N. Corros Sci, 2010; 52: 1927
[8] Sun F L, Lu L, Li X G, Wan H X, Du C W, Liu Z Y. Acta Metall Sin, 2013; 49: 1
(孙飞龙, 卢 琳, 李晓刚, 万红霞, 杜翠薇, 刘智勇. 金属学报, 2013; 49: 1)
[9] Liu G Z, Qian J H, Ma Y, Wu J H. Electrochemistry, 2002; 8: 191
(刘光洲, 钱建华, 马 焱, 吴建华. 电化学, 2002; 8: 191)
[10] Mcneil M B. Corrosion, 1991; 47: 74
[11] Little B J, Ray R I, Wagner P A, Jones-Meehan J, Lee C C, Mansfeld F. Biofouling, 1999; 13: 301
[12] Li J, Li J, Jiao D. Corros Sci Prot Technol, 2011; 3: 18
(李 娟, 李 进, 焦 迪. 腐蚀科学与防护技术, 2011; 3: 18)
[13] Starosvetsky D, Khaselev O, Starosvetsky J, Armon R, Yahalom J. Corros Sci, 2000; 42: 345
[14] Huang G S, Liu G Z, Duan D X, Wang J. Corros Prot, 2004; 25: 242
(黄国胜, 刘光洲, 段东霞, 王 军. 腐蚀与防护, 2004; 25: 242)
[15] Li J, Xu Z Y, Du Y L, Mou W T, Sun W G. J Chin Soc Corros Prot, 2007; 27: 342
(李 进, 许兆义, 杜一立, 牟伟腾, 孙文刚. 中国腐蚀与防护学报, 2007; 27: 342)
[16] Javaherdashti R. Appl Microbiol Biotechnol, 2011; 91: 1507
[17] Dong Z H, Shi W, Ruan H M, Zhang G A. Corros Sci, 2011; 53: 2978
[18] Chen J, Lei Y H, Gao G H, Kong M L, Yin Y S. J Chin Soc Corros Prot, 2011; 31: 231
(陈 娟, 类延华, 高冠慧, 孔茉莉, 尹衍升. 中国腐蚀与防护学报, 2011; 31: 231)
[19] Nercessian D, Duville F B, Desimone M, Simison S, Busalmen J P. Water Res, 2010; 44: 2592
[20] Jayaraman A, Ornek D, Duarte D A, Lee C, Mansfeld F B, Wood T K. Appl Microbiol Biotechnol, 1999; 52: 787
[21] Reyes A, Letelier M V, Iglesia R D, Gonza′lez B, Lagos G. Int Biodeterior Biodegrad, 2008; 61: 135
[22] Valcarce M B, Sa′nchez S R, Va′zquez M. Corros Sci, 2005; 47: 795
[23] Yuan S J, Choong A F M, Pehkonen S O. Corros Sci, 2007; 49: 4352
[24] Wu J Y, Xiao W L, Chai K, Yang Y H. Acta Metall Sin, 2010; 46: 118
(吴进怡, 肖伟龙, 柴 柯, 杨雨辉. 金属学报, 2010; 46: 118)
[25] Wu J Y, Chai K, Xiao W L, Yang Y H, Han E H. Acta Metall Sin, 2010; 46: 755
(吴进怡, 柴 柯, 肖伟龙, 杨雨辉, 韩恩厚. 金属学报, 2010; 46: 755)
[26] Yu L. PhD Dissertation, Institute of Oceanology, Chinese Academy of Sciences, 2011
(于 林. 中国科学院海洋研究所博士学位论文, 2011)
[27] Xu C M. PhD Dissertation, Xi′an Jiaotong University, 2007
(胥聪敏. 西安交通大学博士学位论文, 2007)
[28] Xu C M, Zhang Y H, Cheng G X, Zhu W S H. Mater Sci Eng, 2007; A443: 235
[29] Liu H Q, Wan Y, Zhang D, Hou B R. J Corros Prot, 2011; 32: 81
(刘怀群, 万 逸, 张 盾, 侯保荣. 腐蚀与防护, 2011; 32: 81)
[30] Zhu G J, Xiong K, Li W, Du X H, Gu C X. Ship Eng, 2012; 34(1): 92
(朱冠军, 熊 凯, 李 伟, 杜兴华, 顾彩香. 船舶工程, 2012; 34(1): 92)
[31] Pope R, Little B, Ray R. Biofouling, 2000; 16: 83
[32] Li J. PhD Dissertation, Beijing Jiaotong University, 2007
(李 进. 北京交通大学博士学位论文, 2007)
[33] Cao C N. Corrosion Electrochemical Principle. 2nd Ed, Beijing: Chemical Industry Press, 2004: 251
(曹楚南. 腐蚀电化学原理(第二版). 北京: 化学工业出版社, 2004: 251)
[34] Li Y, Wei X J, Feng F L. Chin J Nonferrous Met, 2001; 11: 248
(李 焰, 魏绪钧, 冯法伦. 中国有色金属学报, 2001; 11: 248)
[1] BAI Yang, WANG Zhenhua, LI Xiangbo, LI Yan. Corrosion Behavior of Al(Y)-30%Al2O3 Coating Fabricated by Low Pressure Cold Spray Technology[J]. 金属学报, 2019, 55(10): 1338-1348.
[2] FU Xinxin, DONG Junhua, HAN En-hou, KE Wei. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY MONITORING ON MILD STEEL Q235 IN SIMULATED INDUSTRIAL ATMOSPHERIC CORROSION ENVIORNMENT[J]. 金属学报, 2014, 50(1): 57-63.
[3] ZHOU Xiaowei,SHEN Yifu. CORROSION BEHAVIOR AND EIS STUDY OF NANOCRYSTALLINE Ni-CeO2 COATINGS IN AN ACID NaCl SOLUTION[J]. 金属学报, 2013, 49(9): 1121-1130.
[4] ZHAO Bo DU Cuiwei LIU Zhiyong LI Xiaogang YANG Jike LI Yueqiang. CORROSION BEHAVIOR OF X80 STEEL IN YINGTAN SOIL SIMULATED SOLUTION UNDER DISBONDED COATING[J]. 金属学报, 2012, 48(12): 1530-1536.
[5] ZHANG Jie SONG Xiuxia LUAN Xin SUN Caixia DUAN Jizhou HOU Baorong . EFFECTS OF SHEWANELLA ALGAE ON CORROSION OF Zn–Al–Cd ANODE[J]. 金属学报, 2012, 48(12): 1495-1502.
[6] ZHU Xuemei CAO Xuemei LIU Ming LEI Mingkai ZHANG Yansheng. AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE[J]. 金属学报, 2012, 48(11): 1357-1364.
[7] WANG Changgang DONG Junhua KE Wei CHEN Nan. EFFCTS OF pH AND Cl CONCENTRATION ON THE CORROSION BEHAVIOR OF COPPER IN BORIC ACID BUFFER SOLUTION[J]. 金属学报, 2011, 47(3): 354-360.
[8] SONG Lixiao ZHANG Zhao ZHANG Jianqing CAO Chunan. ELECTROPLATING MECHANISM OF NANOSTRUCTURED BLACK Ni FILMS[J]. 金属学报, 2011, 47(1): 123-128.
[9] SHI Jinjie SUN Wei GENG Guoqing. INFLUENCE OF CARBONATION ON THE CORROSION PERFORMANCE OF STEEL HRB335 IN SIMULATED CONCRETE PORE SOLUTION[J]. 金属学报, 2011, 47(1): 17-24.
[10] YANG Bo LI Moucheng YAO Meiyi ZHOU Bangxin SHEN Jianian. IN SITU IMPEDANCE CHARACTERISTICS OF ZIRCONIUM ALLOY CORROSION IN HIGH TEMPERATURE AND PRESSURE WATER ENVIRONMENT[J]. 金属学报, 2010, 46(8): 946-950.
[11] ZHOU Jianlong LI Xiaogang DU Cuiwei LI Yunling LI Tao PAN Ying. ANODIC ELECTROCHEMICAL BEHAVIOR OF X80 PIPELINE STEEL IN NaHCO3 SOLUTION[J]. 金属学报, 2010, 46(2): 251-256.
[12] ZHANG Jie LIU Fengling LI Weihua DUAN Jizhou HOU Baorong. EFFECTS OF SRB ON CORROSION OF Zn–Al–Cd ANODE IN MARINE SEDIMENT[J]. 金属学报, 2010, 46(10): 1250-1257.
[13] . EFFECT OF RE (RARE EARTH) ON THE CORROSION RESISTANCE OF CARBON STEEL IN 0.3 mol/L NACL SOLUTION[J]. 金属学报, 2008, 44(7): 863-866 .
[14] ;. SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH CURRENT PULSED ELECTRON BEAM Part II Corrosion behaviors in the simulated body fluid[J]. 金属学报, 2007, 42(1): 71-76 .
[15] SU Jingxin; ZHANG Zhao; CAO Fahe; ZHANG Jianqing; CAO Chunan. EXFOLIATION CORROSION BEHAVIOR OF T6 TREATED 2090 Al-Li ALLOY IN EXCO SOLUTION AND EIS DURING EXFOLIATION CORROSION EVOLUTION[J]. 金属学报, 2005, 41(9): 974-978 .
No Suggested Reading articles found!