Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1153-1159    DOI: 10.3724/SP.J.1037.2012.00221
Current Issue | Archive | Adv Search |
STUDY ON WORK HARDENING BEHAVIOUR AND MECHANISM OF HIGH SILICON AUSTENITIC HIGH MANGANESE STEEL
WEN Yuhua, ZHANG Wanhu, SI Haitao, XIONG Renlong, PENG Huabei
College of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065
Cite this article: 

WEN Yuhua ZHANG Wanhu SI Haitao XIONG Renlong PENG Huabei. STUDY ON WORK HARDENING BEHAVIOUR AND MECHANISM OF HIGH SILICON AUSTENITIC HIGH MANGANESE STEEL. Acta Metall Sin, 2012, 48(10): 1153-1159.

Download:  PDF(1477KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There exist poor work hardening capacity under medium or low stress condition in conventional Hadfield steels. This poor work hardening capacity together with their low yield strength result in a serious plastic deformation in initial service. To address these two problems, a mechanism had been put forward to explain the unusual work hardening ability of conventional Hadfield steel under heavy stress or high load impact. The formation of deformation twins and its concomitant serious lattice distortion is responsible for their unusual work hardening ability due to the existence of interstitial C atoms. Based on the fact that the same effect can be produced after the formation of stress–induced " martensitic transformation, a high silicon high manganese steel Fe–17Mn–6Si–0.3C was designed. In this alloy the stress–induced " martensitic transformation easily took place under low stress. The mechanical properties and microstructure evolution of the high silicon high manganese steel and a conventional Hadfield steel were studied by OM, XRD and TEM under both static tension and dynamic impact loads. The results showed that under the tension load the high silicon high manganese steel had higher strain hardening rate than the conventional Hadfield steel. Under dynamic impact load the high silicon high manganese steel had lower impact deformation but higher surface hardness than the conventional Hadfield steel. The preferential occurrence of stress–induced " martensitic transformation accounted for this difference. This result also indirectly confirmed that the formation of deformation twins and its concomitant serious lattice distortion due to the existence of interstitial C atoms led to the unusual work hardening ability of conventional Hadfield steel.

Key words:  Hadfield steel      work hardening capacity      high silicon high manganese steel deformation twin      stress–induced martensitic  transformation     
Received:  23 April 2012     
ZTFLH:  TG135.6  
Fund: 

Supported by National Natural Science Foundation of China (No.50971095) and Natural Science Foundation for Young Scientists of Sichuan Province in China (No.2010A01–436)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00221     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1153

[1] Roberts W N. Trans Metall Soc AIME, 1964; 230: 372

[2] Dastur Y N, Leslie W C. Metall Trans, 1981; 12A: 749

[3] Srivastava A K, Das K. J Mater Sci, 2008; 43: 5654

[4] Xie J P, Wang W Y, Li J W, Wang A Q, Zhao Y R, Li L L. Wear–Resistant Austenitic Manganese Steel. Beijing: Science Press, 2008: 147

(谢敬佩, 王文焱, 李继文, 王爱琴, 赵永让, 李洛利. 耐磨奥氏体锰钢. 北京: 科学出版社, 2008: 147)

[5] Jost N, Schmidt I. Wear, 1986; 111: 377

[6] Spreadborough J. Acta Cryst, 1960; 13: 603

[7] White C H, Honeycombe R W K. J Iron Steel Inst, 1962; 200: 457

[8] Adler P H, Olson G B, Owen W S. Metall Trans, 1986; 17A: 1725

[9] Owen W S, Grujicic M. Acta Mater, 1999; 47: 111

[10] Shi D K, Liu J H. Acta Metall Sin, 1989; 25: 282

(石德珂, 刘军海. 金属学报, 1989; 25: 282)

[11] Zhu R F, Li S T, Liu Y X, Wang S Q. Sci China, 1997; 27E: 193

(朱瑞富, 李士同, 刘玉先, 王世清. 中国科学, 1997; 27E: 193)

[12] Xu Y H, Chen Y M, Xiong J L, Zhu J H. Acta Metall Sin, 2001; 37: 165

(许云华, 陈渝眉, 熊建龙, 朱金华. 金属学报, 2001; 37: 165)

[13] Remy L, Pineau A. Mater Sci Eng, 1977; 28: 99

[14] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158

[15] Bracke L, Mertens G, Penning J, Decooman B C, Liebeherr M, Akdut N. Metall Mater Trans, 2006; 37A: 307

[16] Charles J, Bergh´ezan A, Lutts A. J Phys, 1982; 43: C4–435

[17] Tian X. Mater Sci Prog, 1993; 3: 215

(田兴. 材料科学进展, 1993; 3: 215)

[18] Brofman P J, Ansell G S. Metall Trans, 1978; 9A: 879

[19] Zhang W, Wu J, Wen Y, Ye J, Li N. J Mater Sci, 2010; 45: 3433

[20] Efstathiou C, Sehitoglu H. Acta Mater, 2010; 58: 1479

[21] Liang X, McDermid J R, Bouaziz O, Wang X, Embury  J D, Zurob H S. Acta Mater, 2009; 57: 3978

[22] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865

[23] Hutchinson B, Ridley N. Scr Mater, 2006; 55: 299

[24] Remy L. Acta Metall, 1978; 26: 443

No related articles found!
No Suggested Reading articles found!