Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1201-1206    DOI: 10.3724/SP.J.1037.2012.00053
Current Issue | Archive | Adv Search |
COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL
WANG Qing 1,2, ZHA Qianfeng 1,2, LIU Enxue 1,2, DONG Chuang 1,2, WANG Xuejun 3,TAN Chaoxin 3, JI Chunjun 4
1. Key Laboratory of Materials Modification of Ministry of Education, Dalian University of Technology, Dalian 116024
2. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
3. Shenyang Blower Works Group Corporation, Shenyang 110869
4. School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

WANG Qing ZHA Qianfeng LIU Enxue DONG Chuang WANG Xuejun TAN Chaoxin JI Chunjun. COMPOSITION DESIGN OF HIGH–STRENGTH MARTENSITIC PRECIPITATION HARDENING STAINLESS STEELS BASED ON A CLUSTER MODEL. Acta Metall Sin, 2012, 48(10): 1201-1206.

Download:  PDF(1729KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The present work investigates composition characteristics of martensitic precipitation hardening stainless steels using a cluster–plus–glue–atom model. In this kind of steels based on the basic ternary Fe–Ni–Cr, the lowest solubility limit of high–temperature austenite corresponds to the cluster formula [NiFe12]Cr3, where NiFe12 is a cuboctahedron centered by Ni and surrounded by 12 Fe atoms in fcc structure and Cr serves as glue atoms. New multi–component alloys were designed by adding C, Mo, Nb and Cu into the basic [NiFe12]Cr3 with self–magnification of cluster formula and similar element substitution. These alloys were prepared by copper mould suction casting method, then solid–solution treated at 1323 K for 2 h followed by water–quenching, and finally aged 753 K for 4 h. The experimental results show that the microstructures and properties of the serial solid–solution treated and aged alloys vary with alloying elements and their contents. Among them, the {[(Ni13Cu3)Fe192](Cr45Mo2.5Nb0.5)}C1 alloy has higher microhardness and tensile strengths, the hardness is 397 HV, yield strength is 971 MPa and ultra strength is 1093 MPa after aging treatment. {[(Ni13Cu3)Fe192](Cr45Mo2.5Nb0.5)}C1 exhibits good corrosion–resistance in 3.5%NaCl solution.

Key words:  matensitic precipitation hardening stainless steel      cluster–plus–glue–atom model      alloying       composition design      high strength     
Received:  07 February 2012     
ZTFLH:  TG142.71  
  TG113  
Fund: 

Supported by National Natural Science Foundation of China (Nos.51171035 and 50901012) and Liaoning Province Postdoctoral Startup Fund

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00053     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1201

[1] Zhao X C, Song W S, Yang Z Y, Liang J X, Li W H. High Strength and Super–high Strength Stainless Steels. Beijing: Metallurgical Industry Press, 2008: 244

(赵先存, 宋为顺, 杨志勇, 梁剑雄, 李文辉. 高强度超高强度不锈钢. 北京: 冶金工业出版社, 2008: 244)

[2] Floreen S. Met Rev, 1968; 13: 115

[3] Decker R F, Floreen S. Proc Conf on Maraging Steels–Recent Developments and Applications, Warrendale, PA:TMS–AIME, 1988: 1

[4] Garrison W M. JOM, 1990; 42: 20

[5] Zhou Q Q, Zhai Y C. Acta Metall Sin, 2009; 45: 1249

(周倩青, 翟玉春. 金属学报, 2009; 45: 1249)

[6] Qiao G Y, Xiao F R, Tan C X. Spec Steel, 1998; 19: 18

(乔桂英, 肖福仁, 谭朝鑫. 特殊钢, 1998; 19: 18)

[7] Hsiao C N, Chiou C S, Yang J R. Mater Chem Phys, 2002;74: 134

[8] Wang J, Zou H, Li C, Yeng Y H, Qiu S Y, Shen B L. Nucl Eng Des, 2006; 236: 2531

[9] Sen D, Patra A K, Mazumder S, Mittra J, Dey G K, De P K. Mater Sci Eng, 2005; A397: 370

[10] Schaeffler A L. Met Prog, 1949; 56: 680

[11] Delong W T, Ostrom G, Szumachowski E. Weld J, 1956; 35: s521

[12] Olson G B. Science, 1997; 277: 1237

[13] Xu W, Rivera–Diaz–del–Castillo P E J, Yan W, Yang K, San Martin S, Kestens L A I, van der Zwaag S. Acta Mater, 2010; 58: 4067

[14] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: 273

[15] Wang Q, Dong C, Qiang J B, Wang Y M. Mater Sci Eng, 2007; A18: 449

[16] Zhang J, Wang Q, Wang Y M, Li C Y, Wen L S, Dong C. J Mater Res, 2010; 25: 328

[17] Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C. Acta Metall Sin, 2010; 46: 1034

(马仁涛, 郝传璞, 王清, 任明法, 王英敏, 董闯. 金属学报, 2010; 46: 1034)

[18] Li B Z, Wang Q, Wang Y M, Li C Y, Qiang J B, Ji C J, Dong C. Metall Mater Trans, 2012; 43A: 544

[19] Takeuchi A, Inoue A. Mater Trans JIM, 2005; 46: 2817

[20] Raynor G V, Rivlin V G. Phase Equilibria in Iron Ternary Alloys. London: Inst Metals, 1988: 316

[21] Abdelshehid M, Mahmodieh K, Mori K, Chen L, Stoyanov P, Davlantes D, Foyos J, Ogren J, Clark Jr R, Es–Said O S. Eng Failure Anal, 2007; 14: 626

[22] Dong H, Esfandiari M, Li X Y. Surf Coat Technol, 2008; 202: 2969

[23] Greer A L. Science, 1995; 267: 1947

[24] Shiflet G. Science, 2003; 300: 443

[25] Lo K H, Shek C H, Lai J K L. Mater Sci Eng, 2009; R65: 39

[26] H¨attestrand M, Nilsson J O, Stiller K, Liu P, Andersson M. Acta Mater, 2004; 52: 1023

[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[5] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[8] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[11] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[12] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[13] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[14] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[15] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
No Suggested Reading articles found!