Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 971-976    DOI: 10.3724/SP.J.1037.2011.00765
论文 Current Issue | Archive | Adv Search |
SEMICONDUCTOR PROPERTIES OF THE PASSIVE FILM FORMED ON Ni201 IN NEUTRAL SOLUTION
TAN Yu, LIANG Kexin, ZHANG Shenghan
School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003
Cite this article: 

TAN Yu LIANG Kexin ZHANG Shenghan. SEMICONDUCTOR PROPERTIES OF THE PASSIVE FILM FORMED ON Ni201 IN NEUTRAL SOLUTION. Acta Metall Sin, 2012, 48(8): 971-976.

Download:  PDF(1929KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The semiconductor properties of the passive film on Ni201 formed by anodic passivation in pH=8.4 buffer solution and the oxide film on Ni201 formed by thermally grown in air at 500 ℃ were investigated by photoelectrochemical response and Mott–Schottky response analysis. The Mott–Schottky plots for both the passive film and the thermal oxide film on Ni201 demonstrated that the two films exhibited p–type semiconductors with different values of flat band potential: 0.40 V for the passive film and 0.15 V for the thermally grown NiO. The photocurrent spectra of the passive film on Ni201 were derived into two peaks for inner NiO and outer Ni(OH)2 layers, respectively. The band gap energy Eg for the inner NiO was 2.8 eV and the Eg for outer Ni(OH)2 was 1.6 eV, respectively. The Eg of the inner NiO of the passive film on Ni201 (2.8 eV) was closed to that of the thermally grown oxide of Ni201 (2.4 eV), indicating that the inner NiO in the passive film is crystalline structure. An electronic energy band model of both p–type semiconductors of inner NiO and outer Ni(OH)2 layers was proposed to explain the photocurrent and Mott–Schottky plots for the passive film on Ni201.
Key words:  Ni201      passive film      Mott–Schottky plot      photoelectrochemical response      semiconductor property     
Received:  07 December 2011     
ZTFLH: 

TM16

 
Fund: 

Supported by National Natural Science Foundation of China (No.50971059) and Fundamental Research Funds for the Central Universities (No.10QX42)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00765     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/971

[1] Sato N. Corros Sci, 2000; 42: 1957

[2] Da C B M, Rondot B, Compere C, Montemor M F, Sim˜oes A M P, Ferreira M G S. Corros Sci, 1998; 40: 481

[3] Schmuki P, Bohni H. J Electrochem Soc, 1992; 139: 1908

[4] Kang J Q, Yang Y F, Jiang X, Shao H X. Corros Sci, 2008; 50: 3576

[5] Sato N. Corros Eng, 2005; 54: 92

(佐藤教男. 材料と环境, 2005; 54: 92)

[6] Hamadou L, Kadri A, Benbrahim N. J Electrochem Soc,2007; 154: 291

[7] Rangel C M, Silva T M, Belo M D. Electrochim Acta, 2005;50: 5076

[8] Cheng Y F, Luo J L. Electrochim Acta, 1999; 44: 2947

[9] Schmuki P, Bohni H. J Electrochem Soc, 1992; 139: 1908

[10] Sikora E, Macdonald D D. Electrochim Acta, 2002; 48: 69

[11] Darowicki K, Krakowiak S, Slepski P. Electrochim Acta, 2006; 51: 2204

[12] Belo M D, Hakiki N E, Ferreira M G S. Electrochim Acta, 1999; 44: 2473

[13] Hakiki N E, Belo M D, Sim˜oes A M P, Ferreira M G S. J Electrochem Soc, 1998; 145: 3821

[14] Kim J, Cho E, Kwon H. Corros Sci, 2001; 43: 1403

[15] Sunseri C, Piazza S, Quarto F D. J Electrochem Soc, 1990; 137: 2411

[16] Quarto F D, Piazza S, Sunseri C. Corros Sci, 1990; 31: 721

[17] Searson P C, Latanision R M. Electrochim Acta, 1990; 35: 445

[18] Kim J, Cho E, Kwon H. Electrochim Acta, 2001; 47: 415

[19] Fujimoto S, Tsuchiya H, Sakamoto M, Shibata T, Asami K. In: Cahay M, Jensen K L, Mumford P D, Binh V T, Holland C, Lee J D eds., Proc 201st Meeting of the Electrochemical

Society, Philadelphia, Pennsylvania, 12–17 May, 2002: 278

[20] Sunseri C, Piazza S, Di Q F. Mater Sci Forum, 1995; 185–188: 435

[21] Wilhelm S M, Hackerman N. J Electrochem Soc, 1981; 128: 1668

[22] Zhang S H, Tan Y, Liang K X. Acta Metall Sin, 2011; 47: 1147

(张胜寒, 檀玉, 梁可心. 金属学报, 2011; 47: 1147)

[23] Scherer J, Ocko B M, Magnussen O M. Electrochim Acta, 2003; 48: 1169

[24] Searson P C, Latanision R M. J Electrochem Soc, 1988; 135: 1358

[25] Tsuchiya H, Fujimoto S, Chihara O, Shibata T. Electrochim Acta, 2002; 47: 4357
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] TANG Yanbing, SHEN Xinwang, LIU Zhihong, QIAO Yanxin, YANG Lanlan, LU Daohua, ZOU Jiasheng, XU Jing. Corrosion Behaviors of Selective Laser Melted Inconel 718 Alloy in NaOH Solution[J]. 金属学报, 2022, 58(3): 324-333.
[3] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[4] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[5] Jiang XU, Xike BAO, Shuyun JIANG. In Vitro Corrosion Resistance of Ta2N Nanocrystalline Coating in Simulated Body Fluids[J]. 金属学报, 2018, 54(3): 443-456.
[6] Dahai XIA, Shizhe SONG, Jianqiu WANG, Jingli LUO. Research Progress on Sulfur-Induced Corrosion of Alloys 690 and 800 in High Temperature and High Pressure Water[J]. 金属学报, 2017, 53(12): 1541-1554.
[7] Yongjun CHEN, Xiaogang HU, Jianbing QIANG, Chuang DONG. QUASICRYSTAL ABRASIVE POLISHING ON SOFT METALS VIA A CHARACTERISTIC SMEARING WEAR MECHANISM FOR EFFICIENT SURFACE FLATTENING, HARDENING AND CORROSION ENHANCEMENT[J]. 金属学报, 2016, 52(10): 1353-1362.
[8] Nan PIAO,Ji CHEN,Chengjiang YIN,Cheng SUN,Xinghang ZHANG,Zhanwen WU. INVESTIGATION ON PITTING CORROSION BEHAVIOR OF ULTRAFINE-GRAINED 304L STAINLESS STEEL IN Cl- CONTAINING SOLUTION[J]. 金属学报, 2015, 51(9): 1077-1084.
[9] WU Zhanwen, CHEN Ji, PIAO Nan, YANG Mingchuan. SYNTHESIS AND PASSIVE PROPERTY OF NANOCOMPOSITE Ni-WC COATING[J]. 金属学报, 2013, 49(10): 1185-1190.
[10] WEI Xin, DONG Junhua, TONG Jian, ZHENG Zhi,KE Wei. INFLUENCE OF TEMPERATURE ON PITTING CORROSION RESISTANCE OF Cr26Mo1 ULTRA PURE HIGH CHROMIUM FERRITE STAINLESS STEEL IN 3.5%NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 502-507.
[11] ZHU Xuemei CAO Xuemei LIU Ming LEI Mingkai ZHANG Yansheng. AN ANTIFERROMAGNETIC Fe24Mn4Al5Cr COVAR ALLOY IMPULSE--PASSIVATED BY AN ALTERNATING CURRENT VOLTAGE OVERLAPPING A DIRECT CURRENT VOLTAGE AND ITS CORROSION RESISTANCE[J]. 金属学报, 2012, 48(11): 1357-1364.
[12] ZHANG Shenghan TAN Yu LIANG Kexin. PHOTOELECTROCHEMICAL STUDY ON SEMICONDUCTOR PROPERTIES OF Ni-BASED ALLOYS OXIDE FILMS FORMED IN 288℃ HIGH TEMPERATURE WATER[J]. 金属学报, 2011, 47(9): 1147-1152.
[13] HUANG Fa WANG Jianqiu HAN En-Hou KE Wei. EFFECTS OF Cl- CONCENTRATION AND TEMPERATURE ON THE CORROSION BEHAVIOR OF ALLOY 690 IN BORATE BUFFER SOLUTION[J]. 金属学报, 2011, 47(7): 809-815.
[14] XIANG Hongliang HUANG Weilin LIU Dong HE Fushan. EFFECTS OF N CONTENT ON MICROSTRUCTURE AND PROPERTIES OF 29Cr CASTING SUPER DUPLEX STAINLESS STEEL[J]. 金属学报, 2010, 46(3): 304-310.
[15] . STUDY ON THE EFFECT OF CHLORIDE IONS ON THE PASSIVE FILM ON REINFORCING STEEL IN SIMULATED CONCRETE PORE SOLUTIONS BY ELECTROCHEMICAL TECHNIQUES[J]. 金属学报, 2008, 44(3): 346-350 .
No Suggested Reading articles found!