Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 965-970    DOI: 10.3724/SP.J.1037.2011.00758
论文 Current Issue | Archive | Adv Search |
THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING
XIANG Jianying, CHEN Shuhai, HUANG Jihua, ZHAO Xingke, ZHANG Hua
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

XIANG Jianying CHEN Shuhai HUANG Jihua ZHAO Xingke ZHANG Hua. THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING. Acta Metall Sin, 2012, 48(8): 965-970.

Download:  PDF(3319KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermal barrier coatings (TBCs) are widely used in turbine engines to protect hot–section metallic components from corrosion and oxidation. The typical material of TBCs is 8YSZ due to its low thermal conductivity (2.1 W·m−1·K−1) and relatively high thermal expansion coefficient (1.1×10−5 K−1). However, at temperature above 1200 ℃, it could hardly be used for long–term application for its low sintering resistance and low phase stability. So it is urgently needed to develop novel TBCs materials with higher phase stability and lower thermal conductivity than 8YSZ. Recently, some materials have been evaluated as the candidates for TBCs, such as LaMgAl11O17 (LMA), La2Zr2O7(LZ), La2Ce2O7(LC) and La2(Zr0.7Ce0.3)2O7 (LZ7C3). Among those interesting candidates, the LZ7C3 ceramic shows the promising thermophysical properties for high–temperature TBCs. In this paper, the novel thermal barrier coating of LZ7C3) was prepared by atmospheric plasma spraying. The microstructure, phase structure, composition, phase stability, thermal conductivity and thermal shock behavior of LZ7C3 coating were studied. These results show that the coating had single pyrochlore structure with high phase stability in high temperature. The thermal conductivity of coating is 20% lower than the bulk material due to high porosity of coating. The thermal shock tests indicate that the lifetime and failure mechanism depend on the test temperature. The coatings are failed after 116 cyc thermal shock from 1000  to room temrature, which is attributed to the spallation of lamella. The failure mode of lamella spallation and layer fracture are found when the coating tested at 1100 ℃, the thermal shock lifetime is 53 cyc. whereas at 1200 ℃, the coatings are spalled entirely after 3 cyc thermal shock in the way of layer fractur at the interface between LZ7C3 and bond coat.
Key words:  thermal barrier coating      La2(Zr0.7Ce0.3)2O7       plasma spraying      thermal conductivity      thermal shock resistance     
Received:  07 December 2011     
ZTFLH: 

TB174.45

 
Fund: 

Supported by National Basic Research Program of China (No.61311203B)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00758     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/965

[1] Li M H, Zhang Z Y, Sun X F, Hu W Y, Gong S K. Acta Metall Sin, 2002; 38: 989

(李美缳 , 张重远, 孙晓峰, 胡望宇, 宫声凯. 金属学报, 2002; 38: 989)

[2] Pomeroy M J. Mater Des, 2005, 26: 223

[3] Cao X Q, R. Vassenb, D. Stoever. J Eur Ceram Soc, 2004;24: 1

[4] Mu R D, Xu Z H, He S M, He L M. J Aero Mater, 2009;29: 32

(牟仁德, 许振华, 贺世美, 何利民. 航空材料学报, 2009; 29: 32)

[5] Ma W, Dong H Y, Guo H B, Gong S K, Zheng X B. Surf Coat Technol, 2010; 204: 3366

[6] Clarke D R, Phillpot S R. Mater Today, 2005; 6: 22

[7] Vassen R, Cao X, Tietz F, Basu D, Stover D. J Am Ceram Soc, 2000; 83: 2023

[8] Li M H, Sun X F, HuWY, Guan H R. Surf Coat Technol, 2007; 201: 7387

[9] Zhou H M, Yi D Q. J Rare Earths, 2008; 26: 770

[10] Cao X Q, Vassen R, Tietz F, Stoever D. J Euro Ceram Soc, 2006; 26: 247

[11] Xu Z H, He L M, Mu R D, He S M, Zhong X H, Cao X Q. J Euro Ceram Soc, 2009; 29: 1771

[12] Xu Z H, He L M, Zhong X H, Mu R D, He S M, Cao X Q. J Alloys Compd, 2009; 478: 168

[13] Xiang J Y, Chen S H, Huang J H, Liang W J, Cao Y J, Wang R J, He Q. J Univ Sci Technol Beijing, 2012; 34: 310

(项建英, 陈树海, 黄继华, 梁文建, 曹艳军, 汪瑞军, 何箐. 北京科技大学学报, 2012; 34: 310)

[14] Schulz U, Saruhan B, Fritscher K, Leyens C. Int J Ceram Technol, 2004; 1: 302

[15] Shillington E A G, Clarke D R. Acta Mater, 1999; 47: 1297

[16] He L M, Su Y F, Allard L F, Lance M J, Lee W Y. Metall Mater Trans, 2004; 35A: 1113

[17] Stecura S. Adv Ceram Mater, 1986; 1: 68

[18] Cao X Q, Vassen R, Jungen W, Schwartz S, Tietz F, Stover D. J Am Ceram Soc, 2001; 84: 2086

[19] Bansal N P, Zhu D M. Mater Sci Eng, 2007; A459: 192

[20] Wu J, Wei X, Padture N P, Klemens P G, Gell M, Garc´?a E. J Am Ceram Soc, 2002; 85: 3031

[21] R´emy M, Jean–Claude L, Alban A. J Euro Ceram Soc, 2004; 24: 3081

[22] Zhou H M, Yi D Q, Yu Z M, Xiao L R. J Alloys Compd, 2007; 438: 217

[23] Zhou H M, Yi D Q, Zhong H. J Inorg Mater, 2008; 23: 567

(周宏明, 易丹青, 钟 华. 无机材料学报, 2008; 23: 567)

[24] Liu L, Xu Q, Wang F Z, Zhang H S. J Am Ceram Soc, 2008; 91: 2398

[25] Ma W, Gong S K, Xu H B, Cao X Q. Surf Coat Technol, 2006; 200: 5113

[26] Wang Y, Guo H B, Gong S K. Ceram Int, 2009; 35: 2639
[1] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[2] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[3] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[4] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[5] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[6] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[7] GUO Lei, GAO Yuan, YE Fuxing, ZHANG Xinmu. CMAS Corrosion Behavior and Protection Method of Thermal Barrier Coatings for Aeroengine[J]. 金属学报, 2021, 57(9): 1184-1198.
[8] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[9] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[10] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[11] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[12] Tao ZHANG, Wei YAN, Zhuoming XIE, Shu MIAO, Junfeng YANG, Xianping WANG, Qianfeng FANG, Changsong LIU. Recent Progress of Oxide/Carbide Dispersion Strengthened W-Based Materials[J]. 金属学报, 2018, 54(6): 831-843.
[13] Di ZHANG, Mengying YUAN, Zhanqiu TAN, Ding-Bang XIONG, Zhiqiang LI. Progress in Interface Modification and Nanoscale Study of Diamond/Cu Composites[J]. 金属学报, 2018, 54(11): 1586-1596.
[14] Xiaoyun LIU,Wenguang WANG,Dong WANG,Bolv XIAO,Dingrui NI,Liqing CHEN,Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites[J]. 金属学报, 2017, 53(7): 869-878.
[15] Xiaoguang HOU,Engang WANG,Xiujie XU,Anyuan DENG,Wanlin WANG. EFFECT OF THERMAL BARRIER COATINGS ABOVE MOULD MENISCUS ON MOULD HEAT TRANSFER AND OSCILLATION MARK MORPHOLOGY OF STRANDS[J]. 金属学报, 2015, 51(9): 1145-1152.
No Suggested Reading articles found!