Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 889-894    DOI: 10.3724/SP.J.1037.2012.00089
论文 Current Issue | Archive | Adv Search |
FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS
ZHANG Hui, WANG Shaoqing
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

ZHANG Hui WANG Shaoqing. FIRST-PRINCIPLES STUDY ON THE PHASE STABILITY OF Mg-La AND Mg-Nd BINARY ALLOYS. Acta Metall Sin, 2012, 48(7): 889-894.

Download:  PDF(724KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The applications of magnesium alloys in automobile industry are limited by their poor high-temperature creep resistance, which can be effectively improved by rare earth (RE) elements addition. In general, rare earth elements are introduced as mixtures of various kinds of metals, and all of the elements are considered to behave in the same way. In practice, various rare earth elements may act differently in magnesium alloys. La and Nd are the two elements usually added to magnesium alloys. In this paper, first-principles calculations are made to investigate the phase stability of Mg-La and Mg-Nd binary alloy systems. In addition, the solubility of La and Nd in Mg is discussed and the elastic constants of the strengthening phases in Mg-La and Mg-Nd alloys are calculated. The equilibrium phases between Mg12RE and Mg3RE are Mg17La2 and Mg41Nd5 for Mg-La and Mg-Nd systems respectively. The difference of calculated solubility for La and Nd in Mg indicates the distinct strengthening mechanism for these two alloy systems. Mg3Nd is predicted to have larger elastic moduli and a better strengthening effect than Mg$_{12}$La.
Key words:  first-principles      magnesium alloy      rare earth element     
Received:  21 February 2012     
ZTFLH: 

TG146.2+2

 
Fund: 

National Basic Research Program of China;Informalization Construction Project of Chinese Academy of Sciences during the 11th Five-Year Plan Period

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00089     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/889

[1] Agnew S R, Nie J F. Scr Mater, 2010; 63: 671

[2] Luo A A. Int Mater Rev, 2004; 49: 13

[3] Chia T L, Easton M A, Zhu S M, Gibson M A, Birbilis N, Nie J F. Intermetallics, 2009; 17: 481

[4] Zhu S M, Gibson M A, Easton M A, Nie J F. Scr Mater, 2010; 63: 698

[5] Guo C P, Du Z M. J Alloys Compd, 2004; 385: 109

[6] Massalski T B. J Phase Equilib, 1991; 12: 2

[7] Berche A, Benigni P, Rogez J, Record M C. CALPHAD, 2011; 35: 580

[8] Berche A, Benigni P, Rogez J, Record M C. J Therm Anal, 2012; 107: 797

[9] Delfino S, Saccone A, Ferro R. Metall Trans, 1990; 21A: 2109

[10] Wu A R, Xia C Q. Mater Des, 2007; 28: 1963

[11] Kohn W, Sham L J. Phys Rev, 1965; 140: 1133

[12] Shin D, Woverton C. Scr Mater, 2010; 63: 680

[13] Kresse G, Hafner J. Phys Rev, 1994; 49B: 14251

[14] Kresse G, Furthm¨uller J. Comput Mater Sci, 1996; 6: 15

[15] Kresse G, Furthm¨uller J. Phys Rev, 1996; 54B: 11169

[16] Bl¨ochl P E. Phys Rev, 1994; 50B: 17953

[17] Kresse G, Joubert J. Phys Rev, 1999; 59B: 1758

[18] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865

[19] Monkhorst H J, Pack J D. Phys Rev, 1976; 13B: 5188

[20] Berche A, Marinelli F, Rogez J, Record M C. Thermochim Acta, 2010; 499: 65

[21] Wang Y F, Zhang W B, Wang Z Z, Deng Y H, Yu N, Tang B Y, Zeng X Q, Ding W J. Comput Mater Sci, 2007; 41: 78

[22] Syassen K, Holzapfel W B. Solid State Commun, 1975; 16: 533

[23] Wr´obel J, Hector J L G, Wolf W, Shang S L, Liu Z K, Kurzydlowski K J. J Alloys Compd, 2012; 512: 296

[24] Tao X M, Ouyang Y F, Liu H S, Feng Y P, Du Y, He Y H. J Alloys Compd, 2011; 509: 6899

[25] Zhang H, Wang S Q. J Mater Res, 2011; 25: 1689

[26] Togo A, Oba F, Tanaka I. Phys Rev, 2008; 78B: 134106

[27] Parlinski K, Li Z Q, Kawazoe Y. Phys Rev Lett, 1997; 78: 4063

[28] Hehmann E, Sommer E, Predel B. Mater Sci Eng, 1990; A125: 249

[29] Ganeshan S, Shang S L, Zhang H, Wang Y, Mantina M, Liu Z K. Intermetallics, 2009; 17: 313

[30] Ganeshan S, Shang S L, Wang Y, Liu Z K. Acta Mater, 2009; 57: 3876

[31] Beckstein O, Klepeis J E, Hart G L W, Pankratov O. Phys Rev, 2001; 63B: 134112

[32] Wang S Q, Ye H Q. J Phys, 2003; 15: 5307

[33] YuWY, Wang N, Xiao X B, Tang B Y, Peng L M, Ding W J. Solid State Sci, 2009; 11: 1400

[34] Chung D H, Dunegan H L, Henderson G W. J Appl Phys, 1967; 38: 5104

[35] Stassis C, Smith G S, Harmon B N, Ho K M, Chen Y. Phys Rev, 1985; 31B: 6298

[36] Greiner J D, Schlader D M, McMasters O D, Gschneidner K A, Smith J F. J Appl Phys, 1976; 47: 3427

[37] Lenkkeri J T, Palmer S B. J Phys, 1977; 7F: 15
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] YANG Tianye, CUI Li, HE Dingyong, HUANG Hui. Enhancement of Microstructure and Mechanical Property of AlSi10Mg-Er-Zr Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2022, 58(9): 1108-1117.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[9] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[11] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[12] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[13] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[14] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[15] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
No Suggested Reading articles found!