Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (7): 789-796    DOI: 10.3724/SP.J.1037.2011.00717
论文 Current Issue | Archive | Adv Search |
SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT
XU Gang, CAI Linling, FENG Liu,  ZHOU Bangxin, LIU Wenqing, WANG Junan
1) Institute of Materials, Shanghai University, Shanghai 200072
2) Laboratory for Microstructures, Shanghai University, Shanghai 200444
Cite this article: 

XU Gang CAI Linling FENG Liu ZHOU Bangxin LIU Wenqing WANG Junan. SEGREGATION OF ATOMS ON THE INTERFACES IN THE RPV MODEL STEEL STUDIED BY APT. Acta Metall Sin, 2012, 48(7): 789-796.

Download:  PDF(3189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The segregation of impurity or solute atoms to grain boundaries as well as phase interfaces can either improve or degrade the chemical, physical and mechanical properties of alloys. This phenomenon has been studied widely for iron based alloys, and the analysis method by an atom probe tomography (APT) is a powerful tool for better understanding this problem. The resulting composition changes of grain boundaries and phase interfaces, as well as the precipitation of Cu-rich nanophases, are frequently associated with the phenomenon of embrittlement in ferritic reactor pressure vessel (RPV) steels. The present work was carried out to study the segregation of impurity or solute atoms to grain boundaries as well as phase interfaces in a RPV model steel with higher content of Cu (0.53%, atomic fraction) than commercially available one. The RPV model steel was prepared by vacuum induction melting. The specimens were further heat treated by water quenching at 880 ℃ for 30 min and tempering at 660 ℃ for 10 h, and finally aged at 370 ℃ for 3000 h. The results show that the segregation amount of Ni, Mn, Si, C, P and Mo atoms on grain boundaries are varied. The sequence of segregation tendency for different atoms from strong to weak is C, P, Mo, Si, Mn and Ni, whilst Cu atoms were clearly depleted at the grain boundaries. Si atoms also segregate to the grain boundaries, but it depends on the characteristic of the grain boundaries. The C segregation range at grain boundaries is the widest. According to the width of the composition profiles at the half intensity for different atoms at the grain boundaries, the segregation range of C atoms is 1.5 times wider than that of Mn, Ni and Mo atoms. Furthermore, Ni and Mn atoms evidently segregate to the interfaces between the Cu-rich phase and the α-Fe matrix, while C, P, Mo, Si atoms prefer to segregate towards the α-Fe matrix near the interfaces, but their segregation amount at the interfaces of Cu-rich phase and the α-Fe matrix is less than that at the grain boundaries.
Key words:  reactor pressure vessel model steel      atom probe tomograghy      grain boundary      phase boundary      segregation     
Received:  17 November 2011     
ZTFLH: 

TL341

 
Fund: 

;National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00717     OR     https://www.ams.org.cn/EN/Y2012/V48/I7/789

[1] Takaki S, Fujioka M, Aihara S, Nagataki Y, Yamashita T, Sano N, Adachi Y, Nomura M, Yaguchi H. Mater Trans, 2004; 45: 2239

[2] Garc´?a–Mazar´?o M, Lancha A M, Hern´andez–Mayoral M. J Nucl Mater, 2007; 360: 293

[3] Laha K, Kyono J, Kishimoto S, Shinya N. Scr Mater, 2005; 52: 675

[4] Bowen P, Hippsley C A, Knott J F. Acta Metall, 1984; 32: 637

[5] Bulloch J H. Int J Pres Ves Pip, 1988; 33: 197

[6] Wang K, Xu T D, Shao C, Yang C. J Iron Steel Res Int, 2011; 18: 61

[7] Wei W, Grabke H J. Corros Sci, 1986; 26: 223

[8] Atrens A, Wang J Q, Stiller K, Andren H O. Corros Sci, 2006; 48: 79

[9] Heo N H, Jung Y C, Lee J K, Kim K T. Scr Mater, 2008; 59: 1200

[10] Lemarchand D, Cadel E, Chambreland S, Blavette D. Philos Mag, 2002; 82A: 1651

[11] Kolli R P, Seidman D N. Acta Mater, 2008; 56: 2073

[12] Wu J, Song S H, Weng L Q, Xi T H, Yuan Z X. Mater Charact, 2008; 59: 261

[13] Khalid F A. Scr Mater, 2001; 44: 797

[14] Hudson D, Smith G D W. Scr Mater, 2009; 61: 411

[15] Sha G, Yao L, Liao X Z, Ringer S P, Duan Z C, Langdon T G. Ultramicroscopy, 2011; 111: 500

[16] Isheim D, Kolli R P, Fine M E, Seidman D N. Scr Mater, 2006; 55: 35

[17] Etienne A, Radiguet B, Cunningham N J, Odette G R, Valiev R, Pareige P. Ultramicroscopy, 2011; 111: 659

[18] Li H, Xia S, Zhou B X, Liu W Q. Mater Charact, 2012; 66: 68

[19] Toyama T, Nagai Y, Tang Z, Hasegawa M, Almazouzi A, van Walle E, Gerard R. Acta Mater, 2007; 55: 6852

[20] Bischler P J E, Wild R K. In: Gelles D S, Nanstad R K, Kumar A S, Little E A eds., Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270, West Conshohocken, PA: American Society for Testing and Materials, 1996: 260

[21] Miller M K. Atom Probe Tomography: Analysis at the Atomic Level. New York: Kliwer Academic/Plenum Publishers, 2000: 25

[22] Yong Q L. Secondary Phase in Steel. Beijing: Metallurgical Industry Press, 2006: 127

(雍其龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 127)

[23] Hornbogen E, Glenn R C. Trans Metall Soc AIME, 1960; 218: 1064

[24] Xu G, Chu D F, Cai L L, Zhou B X, Wang W, Peng J C. Acta Metall Sin, 2011; 7: 905

(徐刚, 楚大锋, 蔡琳玲, 周邦新, 王伟, 彭剑超. 金属学报, 2011; 47: 905)

[25] Vurpillot F, Cerezo A, Blavette D, Larson D J. Microsc Microanal, 2004; 10: 384

[26] Blavette D, Duval P, Letellier L, Guttmann M. Acta Mater, 1996; 44: 4995

[27] Faulkner R G, Jones R B, Zheng L, Flewett P E J. Philos Mag, 2005; 85: 2065

[28] Suzuki S, Obata M, Abiko K, Kimura H. Scr Metall, 1983; 17: 1325

[29] Cerezo A, Clifton P H, Lozano–Perez S, Panayi P, Sha G, Smith G D W. Microsc Microanal, 2007; 13: 408

[30] Jiao Z, Was G S. Acta Mater, 2011; 59: 4467

[31] Chu D F, Xu G, Wang W, Peng J C, Wang J A, Zhou B X. Acta Metall Sin, 2011; 47: 269

(楚大锋, 徐刚, 王伟, 彭剑超, 王均安, 周邦新. 金属学报, 2011; 47: 269)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[7] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[8] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[9] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[10] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[11] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[12] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
[13] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[14] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[15] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
No Suggested Reading articles found!