Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (6): 733-738    DOI: 10.3724/SP.J.1037.2012.00156
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(11-13)Gd-1Zn ALLOYS
ZHEN Rui1,2, SUN Yangshan1, BAI Jing1, SUN Jingjing1, PI Jinhong1,2
1. Jiangsu Key Lab of Advanced Metallic Materials, College of Material Science and Engineering, Southeast University,Nanjing 211189\par
2. Department of Materials Science and Engineering, Nanjing Institute of Technology,Nanjing 211167
Cite this article: 

ZHEN Rui, SUN Yangshan, BAI Jing, SUN Jingjing, PI Jinhong. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF Mg-(11-13)Gd-1Zn ALLOYS. Acta Metall Sin, 2012, 48(6): 733-738.

Download:  PDF(2241KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Three ternary alloys with composition of Mg-(11-13)Gd-1Zn (mass fraction, %) have been prepared and their microstructures and mechanical properties have been also investigated. The results showed that the as cast microstructure of the three alloys consists of α-Mg matrix, (Mg, Zn)3Gd eutectic and a 14H long--period stacking ordered (14H--LPSO) phase. With the increase of Gd content the volume fraction of the (Mg, Zn)3Gd eutectic increases. After extrusion the (Mg, Zn)3Gd eutectic networks are destroyed and its broken particles are arranged in strips along the direction of extrusion, and the 14H--LPSO phase is distributed between (Mg, Zn)3Gd strips. Solid solution treatment at high temperature above 500 ℃ results in the dissolution of (Mg, Zn)3Gd phase into the matrix and the increase of the 14H-LPSO phase. After solution treated alloys are aged at temperature of 225 ℃ (T6 treatment) the volume fraction of the 14H-LPSO phase is further increased and both β' and β1 precipitates appear in the microstructure. Aging of as extruded alloys (T5 treatment) also causes the formation of β' and β1 precipitates but the volume fraction of the 14H--LPSO phase in the T5 treated specimens is lower than that in specimens after T6 treatment. High tensile strength combined with good ductility is obtained from the Mg--11Gd--1Zn alloy after T6 aging.
Key words:  magnesium alloy      Gd      Zn      aging      long-period stacking ordered phase     
Received:  26 March 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00156     OR     https://www.ams.org.cn/EN/Y2012/V48/I6/733

[1] Bae D H, Lee M H, Kim K T, Kim D H.  J Alloy Compd, 2002; 342: 445

[2] Liu K, Zhang J H, Su G H, Tang D X, Rokhlin L L, Elkin F M, Meng J.  J Alloy Compd, 2009; 481: 811

[3] Gao Y, Wang Q D, Gu J H, Zhao Y, Tong Y, Yin D D.  J Alloy Compd, 2009; 477: 374

[4] Li D J, Zeng X Q, Dong J, Zhai C Q, Ding W J.  J Alloy Compd, 2009; 468: 164

[5] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J.  J Alloy Compd, 2009; 477: 193

[6] Apps P J, Karimzadeh H, King J F, Lorimer G.  Scr Mater, 2003; 8: 1023

[7] Kawamura Y, Hayashi K, Inoue A, Masumoto T.  Mater Trans, 2001; 42: 1171

[8] Itoi T, Seimiya T, Kawamura Y, Hirohashi M.  Scr Mater, 2004; 51: 107

[9] Chino Y, Mabuchi M, Hagiwara S, Iwasaki H, Yamamoto A, Tsubakino H.  Scr Mater, 2004; 51: 711

[10] Liu K, Meng J.  J Alloys Compd, 2011; 509: 3299

[11] Yang Z, Li J P, Guo Y C, Liu T, Xia F, Zeng Z W, Liang M X.  Mater Sci Eng, 2007; A454--455: 274

[12] Liu X B, Chen R S, Han E H.  J Alloy Compd, 2008; 465: 232

[13] Han X Z, Xu W C, Shan D B.  J Alloy Compd, 2011; 509: 8625

[14] Yin D D, Wang Q D, Gao Y, Chen C J, Zheng J.  J Alloy Compd, 2011; 509: 1696

[15] Zhang S, Yuan G Y, Lu C, Ding W J.  J Alloy Compd, 2011; 509: 3515

[16] Zheng L, Liu C M, Wan Y C, Yang P W, Shu X.  J Alloy Compd, 2011; 509: 8832

[17] Yamasaki M, Sasaki M, Nishijima M, Hiraga K, Kawamura Y.  Acta Mater, 2007; 55: 6798

[18] Honma T, Ohkubo T, Kamado S, Hono K.  Acta Mater, 2007; 55: 4137

[19] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y.  Scr Mater, 2005; 53: 799

[20] Shao X H, Yang Z Q, Ma X L.  Acta Mater, 2010; 58: 4760

[21] Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda H Y, Umakoshi Y. Acta Mater, 2010; 58: 6282

[22] Zeng X Q, Wu Y J, Peng L M, Lin D L, Ding W J, Peng Y H.  Acta Metall Sin, 2010; 46: 1041

     (曾小勤, 吴玉娟, 彭立明, 林栋樑, 丁文江, 彭赢红. 金属学报, 2010; 46: 1041)

[23] Matsuda M, Ando S, Nishida M.  Mater Trans, 2005; 46: 361

[24] Antion C, Donnadieu P, Perrard F, Desehamps A, Tassin C, Piseh A.  Acta Mater, 2003; 51: 5335

[25] Nie J F, Oh--ishi K, Gao X, Hono K.  Acta Mater, 2008; 56: 6061

[26] Liu K, Zhang J H, Lu H, Tang D X, Rokhlin L L, Elkin F M, Meng J.  Mater Des, 2010; 31: 210
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[4] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[5] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[8] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[9] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[10] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[11] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[13] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[14] SHEN Gang, ZHANG Wentai, ZHOU Chao, JI Huanzhong, LUO En, ZHANG Haijun, WAN Guojiang. Mechanical Properties and Degradation Behavior of Hot-Extruded Zn-2Cu-0.5Zr Alloy[J]. 金属学报, 2022, 58(6): 781-791.
[15] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
No Suggested Reading articles found!